5.證明:$\sqrt{ab}$≥$\frac{2ab}{a+b}$.

分析 根據(jù)基本不等式,分析法可證.

解答 證明:要證:$\sqrt{ab}$≥$\frac{2ab}{a+b}$,
只要證1≥$\frac{2\sqrt{ab}}{a+b}$,
只要證2$\sqrt{ab}$≤a+b,
由基本不等式可得2$\sqrt{ab}$≤a+b顯然成立,
所以$\sqrt{ab}$≥$\frac{2ab}{a+b}$.

點(diǎn)評(píng) 本題考查不等式的證明,涉及基本不等式和分析法證明不等式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.圓C的半徑為$\sqrt{13}$,且與直線2x+3y-10=0切于點(diǎn)P(2,2).
(1)求圓C的方程;
(2)若原點(diǎn)不在圓C的內(nèi)部,且圓x2+y2=m與圓C相交,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知10α=2,10β=3,求100${\;}^{2α-\frac{1}{3}β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知兩點(diǎn)P(1,3)Q(4,-1),則這兩點(diǎn)間的距離為(  )
A.35B.25C.15D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知拋物線方程y2=2px(p>0),AB是過(guò)焦點(diǎn)F的一條弦,點(diǎn)A(x1,y1),B(x2,y2).求證:
(1)y1y2=-p2,x1x2=$\frac{{p}^{2}}{4}$;
(2)|AB|=x1+x2+p=$\frac{2p}{si{n}^{2}θ}$(θ為直線AB的傾斜角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在等比數(shù)列{an}中,an=8an-3(n≥4,且n∈N*).且4a1,${{a}_{2}}^{2}$,a3成等差數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令b1=1,bn=$\frac{{a}_{n-1}}{2}$(n≥2,且n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,則a的取值范圍(  )
A.a>1B.a≤1C.a<-1D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等比數(shù)列{an}中,已知對(duì)任意正整數(shù)n,a1+a2+…+an=3n-1,則a12+a22+…+an2=$\frac{{9}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=x2-2x+1(x≥1)的反函數(shù)f-1(x)=1+$\sqrt{x}$(x≥0).

查看答案和解析>>

同步練習(xí)冊(cè)答案