【題目】若關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)y(萬元)有如下統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系.
(1) 請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ;
(2) 估計(jì)使用年限為10年時(shí),試求維修費(fèi)用約是多少?(精確到兩位小數(shù))
【答案】(1);(2)12.38萬元
【解析】
根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù),再根據(jù)樣本中心點(diǎn)一定在線性回歸方程上求出,即可得到答案
把代入求解即可得到結(jié)果
(1)
i | 1 | 2 | 3 | 4 | 5 |
xi | 2 | 3 | 4 | 5 | 6 |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
==1.23,
=— = 5-1.23×4 = 0.08.
所以,回歸直線方程為=1.23x + 0.08.
(2)當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬元), 即估計(jì)使用10年時(shí)維修費(fèi)約為12.38萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a∈R,函數(shù)f(x)=x|x﹣a|﹣a.
(1)若f(x)為奇函數(shù),求a的值;
(2)若對(duì)任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍;
(3)當(dāng)a>4時(shí),求函數(shù)y=f(f(x)+a)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<x< ,sinx﹣cosx= ,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,則2a+3b+c=( )
A.50
B.70
C.110
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.
(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);
(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2cosx,t)(t∈R), =(sinx﹣cosx,1),函數(shù)y=f(x)= ,將y=f(x)的圖象向左平移 個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0, ]內(nèi)的最大值為 .
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 g( ﹣ )=﹣1,a=2,求BC邊上的高的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,真命題的序號(hào)有 .(寫出所有真命題的序號(hào))
①若,則“”是“”成立的充分不必要條件;
②命題“使得”的否定是“均有”;
③命題“若,則或”的否命題是“若,則”;
④函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(Ⅱ)當(dāng),即時(shí),函數(shù)在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時(shí),
由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,
所以在區(qū)間上的最小值為.
綜上,當(dāng)時(shí),的最小值為;
當(dāng)時(shí),的最小值為;
當(dāng)時(shí),的最小值為.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,過作的兩弦與,若,求證: 直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的三棱錐ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點(diǎn).
(1)求證:DE∥平面ACC1A1;
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=3x+2xf′(1),則曲線f(x)在x=0處的切線在x軸上的截距為( )
A.1
B.5ln3
C.﹣5ln3
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com