18.命題:“?b∈R,使直線y=-x+b是曲線y=x3-3ax的切線”是假命題,則實數(shù)a的取值范圍是( 。
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

分析 由題意,存在實數(shù)a,滿足對任意的實數(shù)b,直線y=-x+b都不是曲線y=x3-3ax的切線.由直線y=-x+b得直線斜率為-1,直線y=-x+b不與曲線f(x)相切知曲線f(x)上任一點斜率都不為-1,即f′(x)≠-1,求導(dǎo)函數(shù),并求出其范圍[-3a,+∞),得不等式-3a>-1,即得實數(shù)a的取值范圍.

解答 解:由題意,存在實數(shù)a,滿足對任意的實數(shù)b,直線y=-x+b都不是曲線y=x3-3ax的切線.
設(shè)f(x)=x3-3ax,求導(dǎo)函數(shù),可得f′(x)=3x2-3a∈[-3a,+∞),
∵存在實數(shù)a,滿足對任意的實數(shù)b,直線y=-x+b都不是曲線y=x3-3ax的切線,
∴-1∉[-3a,+∞),∴-3a>-1,即實數(shù)a的取值范圍為a<$\frac{1}{3}$
故選:A.

點評 本題考查導(dǎo)數(shù)知識的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義max(a,b)=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,f(x)=max(|x-1|,-x2+6x-5),若f(x)=m有四個不同的實數(shù)解,則實數(shù)m的取值范圍是( 。
A.(-∞,4)B.(0,3)C.(0.4)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知m>0,n>0,2m+n=4,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.點(-1,2)到直線l:3x-2=0的距離(  )
A.$\frac{5}{3}$B.3C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上異于A、B的點.
PA=AB,∠BAC=60°,點D,E分別在棱PB,PC上,且DE∥BC.
(1)求證:BC⊥平面PAC;
(2)當(dāng)D為PB的中點時,求AD與平面PBC所成的角的正弦值;
(3)是否存在點E使得二面角A-DE-P為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線y2=2px(p>0)的焦點為F與橢圓C的一個焦點重合,且拋物線的準(zhǔn)線與橢圓C相交于點$({-1,\frac{{\sqrt{2}}}{2}})$.
(1)求拋物線的方程;
(2)過點F是否存在直線l與橢圓C交于M,N兩點,且以MN為對角線的正方形的第三個頂點恰在y軸上?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定兩個命題,p:對任意實數(shù)x都有ax2+ax+1>0恒成立;q:關(guān)于x的方程x2-x+a=0有實數(shù)根.如果p與q中有且僅有一個為真命題,則實數(shù)a的取值范圍為(-∞,0)∪($\frac{1}{4}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB|}}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ≠0),則點P所在直線過△ABC的內(nèi)心.

查看答案和解析>>

同步練習(xí)冊答案