11.已知a,b,c>0,a+b+c=1.求證:
(Ⅰ)$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤$\sqrt{3}$
(Ⅱ)$\frac{1}{3a+1}$+$\frac{1}{3b+1}$+$\frac{1}{3c+1}$≥$\frac{3}{2}$.

分析 (Ⅰ)由柯西不等式得:($\sqrt{a}$+$\sqrt$+$\sqrt{c}$)2≤(12+12+12)[($\sqrt{a}$)2+($\sqrt$)2+($\sqrt{c}$)2]=3,即可證明結(jié)論;
(Ⅱ)由柯西不等式得:[(3a+1)+(3b+1)+(3c+1)]($\frac{1}{3a+1}$+$\frac{1}{3b+1}$+$\frac{1}{3c+1}$)≥($\sqrt{3a+1}$•$\frac{1}{\sqrt{3a+1}}$+$\sqrt{3b+1}$•$\frac{1}{\sqrt{3b+1}}$+$\sqrt{3c+1}$•$\frac{1}{\sqrt{3c+1}}$)2,即可證明結(jié)論.

解答 證明:(Ⅰ)由柯西不等式得:($\sqrt{a}$+$\sqrt$+$\sqrt{c}$)2≤(12+12+12)[($\sqrt{a}$)2+($\sqrt$)2+($\sqrt{c}$)2]=3,
∴$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤$\sqrt{3}$.
(Ⅱ)由柯西不等式得:[(3a+1)+(3b+1)+(3c+1)]($\frac{1}{3a+1}$+$\frac{1}{3b+1}$+$\frac{1}{3c+1}$)
≥($\sqrt{3a+1}$•$\frac{1}{\sqrt{3a+1}}$+$\sqrt{3b+1}$•$\frac{1}{\sqrt{3b+1}}$+$\sqrt{3c+1}$•$\frac{1}{\sqrt{3c+1}}$)2=9
∴$\frac{1}{3a+1}$+$\frac{1}{3b+1}$+$\frac{1}{3c+1}$≥$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查柯西不等式,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用柯西不等式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求過(guò)點(diǎn)(2$\sqrt{3}$,2)、($\sqrt{6}$,$\frac{\sqrt{2}}{2}$)的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.以AB為直徑的圓內(nèi)有一內(nèi)接梯形ABCD,且AB∥CD,以A,B為焦點(diǎn)的橢圓恰好過(guò)C,D兩點(diǎn),當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),此橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.$\frac{20}{3}$B.$\frac{22}{3}$C.$\frac{24}{3}$D.$\frac{26}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$3,則(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t-1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù))
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,$\frac{π}{6}$),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求點(diǎn)Q到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=5,S8=64.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{S}_{n-1}}+\frac{1}{{S}_{n+1}}$>$\frac{2}{{S}_{n}}$(n≥2,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=$\sqrt{3}$sin4x-3cos4x+1的最小正周期和最小值分別是( 。
A.π和1-$\sqrt{3}$B.π和1-2$\frac{π}{2}$$\sqrt{3}$C.$\frac{π}{2}$和1-$\sqrt{3}$D.$\frac{π}{2}$和1-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${s}_{n}=\frac{1}{2}{n}^{2}+\frac{11}{2}n(n∈{N}^{*})$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${c}_{n=}\frac{1}{(2{a}_{n}-11)(2{a}_{n}-9)}$,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求使不等式Tn>$\frac{k}{2014}$對(duì)一切n∈N*都成立的最大正整數(shù)k的值;
(3)設(shè)f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2k-1,k∈{N}^{*})}\\{3{a}_{n}-13(n=2k,k∈{N}^{*})}\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案