分析 (1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,通過a3=5,S8=64可得首項(xiàng)和公差,計算即可;
(2)通過(1)可知Sn=n2,利用不等式的性質(zhì)化簡可得原命題成立,只需3n2>1在n≥1時恒成立.
解答 (1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
根據(jù)題意,可得$\left\{\begin{array}{l}{{a}_{3}={a}_{1}+2d=5}\\{{S}_{8}=8{a}_{1}+28d=64}\end{array}\right.$,
解得a1=1,d=2,
∴數(shù)列{an}的通項(xiàng)公式為:an=2n-1;
(2)證明:由(1)可知:Sn=n2,
要證:$\frac{1}{{S}_{n-1}}+\frac{1}{{S}_{n+1}}$>$\frac{2}{{S}_{n}}$(n≥2,n∈N)恒成立,
只需證:$\frac{1}{(n-1)^{2}}$+$\frac{1}{(n+1)^{2}}$>$\frac{2}{{n}^{2}}$,
只需證:[(n+1)2+(n-1)2]n2>2(n2-1)2,
只需證:(n2+1)n2>(n2-1)2,
只需證:3n2>1,
而3n2>1在n≥1時恒成立,且以上每步均可逆,
從而:$\frac{1}{{S}_{n-1}}+\frac{1}{{S}_{n+1}}$>$\frac{2}{{S}_{n}}$(n≥2,n∈N)恒成立.
點(diǎn)評 本題考查等差數(shù)列的簡單性質(zhì),利用不等式的性質(zhì)進(jìn)行化簡是解決本題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1,2} | C. | {-1,0,1,2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -x2+ln(x+$\sqrt{1+{x}^{2}}$) | B. | x2-ln(x+$\sqrt{1+{x}^{2}}$) | C. | -x2+ln(-x+$\sqrt{1+{x}^{2}}$) | D. | x2+ln(x+$\sqrt{1+{x}^{2}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | l | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com