精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調增函數,求a的取值范圍;
(2)設函數f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數 ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數a的取值范圍.

【答案】
(1)解:∵函數f(x)=ax2﹣x+2a﹣1(a>0)的圖象是開口朝上,且以直線x= 為對稱軸的拋物線,

若f(x)在區(qū)間[1,2]為單調增函數

解得:


(2)解:①當0< <1,即a> 時,f(x)在區(qū)間[1,2]上為增函數,

此時g(a)=f(1)=3a﹣2

②當1≤ ≤2,即 時,f(x)在區(qū)間[1, ]是減函數,在區(qū)間[ ,2]上為增函數,

此時g(a)=f( )=

③當 >2,即0<a< 時,f(x)在區(qū)間[1,2]上是減函數,

此時g(a)=f(2)=6a﹣3

綜上所述:


(3)解:對任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max,

由(2)知,f(x)min=g(a)

又因為函數 ,

所以函數h(x)在[1,2]上為單調減函數,所以 ,

① 當 時,由g(a)≥h(x)max得: ,解得 ,(舍去)

②當 時,由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,

∴(4a+1)(2a﹣1)≥0,解得

所以

③當 時,由g(a)≥h(x)max得: ,解得

所以a

綜上所述:實數a的取值范圍為


【解析】(1)若f(x)在區(qū)間[1,2]為單調增函數,則 ,解得a的取值范圍;(2)分類討論給定區(qū)間與對稱軸的關系,分析出各種情況下g(x)的表達式,綜合討論結果,可得答案;(3)不等式f(x1)≥h(x2)恒成立,即f(x)min≥h(x)max , 分類討論各種情況下實數a的取值,綜合討論結果,可得答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)當m=1時,求函數y=g(x)在點(1,0)處的切線方程;
(2)當m=﹣12時,求f(x)的極小值;
(3)若函數y=g(x)在x∈( ,+∞)上的兩個不同的數a,b(a<b)處取得極值,記{x}表示大于x的最小整數,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內橢圓上的一點, ,求點的坐標;

(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要得到函數y=3cosx的圖象,只需將函數y=3sin(2x﹣ )的圖象上所有點的(
A.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向左平移 個單位長度
B.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向右平移 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向左平移 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向右平移 個單位長度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不少于900人運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數的統(tǒng)計數據的莖葉圖如圖所示.已知兩組技工在單位時間內加工的合格零件平均數都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內加工的合格零件的方差 ,并由此分析兩組技工的加工水平.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(x﹣2)﹣ ,(a為常數且a≠0),若f(x)在x0處取得極值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍(
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知α為△ABC的內角,且tanα=﹣ ,計算:
(1) ;
(2)sin( +α)﹣cos( ﹣α).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果sin3θ﹣cos3θ>cosθ﹣sinθ,且θ∈(0,2π),那么角θ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案