【題目】如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).
(1)求證:VA∥平面BDE;
(2)求證:平面VAC⊥平面BDE.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)連結(jié)OE,證明VA∥OE得到答案.
(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.
(1)連結(jié)OE.因?yàn)榈酌?/span>ABCD是菱形,所以O為AC的中點(diǎn),
又因?yàn)?/span>E是棱VC的中點(diǎn),所以VA∥OE,又因?yàn)?/span>OE平面BDE,VA平面BDE,
所以VA∥平面BDE;
(2)因?yàn)?/span>VO⊥平面ABCD,又BD平面ABCD,所以VO⊥BD,
因?yàn)榈酌?/span>ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC平面VAC,
所以BD⊥平面VAC.又因?yàn)?/span>BD平面BDE,所以平面VAC⊥平面BDE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)已知直線:,:若直線與關(guān)于對(duì)稱,又函數(shù)在處的切線與平行,求實(shí)數(shù)的值;
(2)若,證明:當(dāng)時(shí),恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率為,已知也是拋物線的焦點(diǎn), 到準(zhǔn)線的距離為
(1)求橢圓的方程和拋物線的方程;
(2)過(guò)原點(diǎn)的直線交于兩點(diǎn),點(diǎn)在第一象限,軸,垂足為,交于另一點(diǎn).
①證明:三點(diǎn)共線
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則( )
A.sgn[g(x)]=sgn xB.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4.線段AB的垂直平分線與x軸交于點(diǎn) C.
(1)求拋物線E的方程;
(2)求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)作互相垂直的兩條直線、,其中直線交橢圓于兩點(diǎn),直線交直線于點(diǎn),求證:直線平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在定義域上不單調(diào),求的取值范圍;
(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com