【題目】已知函數(shù).

1)已知直線若直線關(guān)于對(duì)稱,又函數(shù)處的切線與平行,求實(shí)數(shù)的值;

2)若,證明:當(dāng)時(shí),恒成立.

【答案】1;(2)見(jiàn)解析.

【解析】

1)首先利用直線一定過(guò)的交點(diǎn),再利用直線上任意點(diǎn)關(guān)于對(duì)稱的點(diǎn)都在直線上,之后應(yīng)用兩點(diǎn)是式求得直線的方程,求得其斜率,即為函數(shù)的值,從而求得結(jié)果;

2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而證得結(jié)果.

1)由解得

必過(guò)的交點(diǎn).

上取點(diǎn),易得點(diǎn)關(guān)于對(duì)稱的點(diǎn)為,

即為直線,所以的方程為,

,其斜率為.

,

所以函數(shù)處的切線的斜率為,

由題意可得,解得.

2)法一:因?yàn)?/span>

所以,

①若.上單調(diào)遞減.

②若,當(dāng),時(shí),時(shí),

當(dāng)時(shí),.

,上單調(diào)遞減,在上單調(diào)遞增.

綜上,當(dāng)時(shí),函數(shù)上單調(diào)遞減,

所以,又

所以,當(dāng)時(shí),恒成立.

法二:要證,即證

因?yàn)?/span>,即證.

,∴.

設(shè),則.

設(shè),則,

上,恒成立.

上單調(diào)遞增.

又∵,∴時(shí),,

所以上單調(diào)遞增,

,∴,

所以,

所以上恒成立.

即當(dāng)時(shí),恒成立.

綜上,當(dāng)時(shí),恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知圓和雙曲線,記軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記在第一、第四象限的公共點(diǎn)分別為、.

1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;

2)若,且,求實(shí)數(shù)的值;

3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在長(zhǎng)方體中,,,點(diǎn)上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:

四棱錐的體積為20

存在唯一的點(diǎn),使截面四邊形的周長(zhǎng)取得最小值

當(dāng)點(diǎn)不與,重合時(shí),在棱上均存在點(diǎn),使得平面;

存在唯一的點(diǎn),使得平面,且

其中正確的命題是_____(填寫(xiě)所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形EFMN,,以EF的中點(diǎn)O為原點(diǎn),建立如圖的平面直角坐標(biāo)系,若橢圓E,F為焦點(diǎn),且經(jīng)過(guò)MN兩點(diǎn).

1)求橢圓的方程;

2)直線相交于AB兩點(diǎn),在y軸上是否存在點(diǎn)C,使得△ABC為正三角形,若存在,求出l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)曲線C1 (a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,城市空氣質(zhì)量也越來(lái)越引起了人民的關(guān)注,如圖是我國(guó)某大城市20181月至8月份的空氣質(zhì)量檢測(cè)結(jié)果,圖中一、二、三、四級(jí)是空氣質(zhì)量等級(jí),一級(jí)空氣質(zhì)量最好,一級(jí)和二級(jí)都是空氣質(zhì)量合格,下面說(shuō)法錯(cuò)誤的是(

A.6月的空氣質(zhì)量最差

B.8月是空氣質(zhì)量最好的一個(gè)月

C.第二季度與第一季度相比,空氣質(zhì)量合格天數(shù)的比重下降了

D.1月至8月空氣質(zhì)量合格天數(shù)超過(guò)20天的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 上一點(diǎn),且.

(1)求證: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐VABCD中,底面ABCD是菱形,對(duì)角線ACBD交于點(diǎn)O,VO⊥平面ABCDE是棱VC的中點(diǎn).

1)求證:VA∥平面BDE;

2)求證:平面VAC⊥平面BDE

查看答案和解析>>

同步練習(xí)冊(cè)答案