10.如圖,是一個(gè)幾何體的正視圖、側(cè)視圖、俯視圖,且正視圖、側(cè)視圖都是矩形,俯視圖是平行四邊形,則該幾何體的體積是( 。
A.$\frac{8\sqrt{15}}{3}$B.8$\sqrt{15}$C.$\frac{4\sqrt{15}}{3}$D.4$\sqrt{15}$

分析 由三視圖可知,該幾何體是一個(gè)四棱柱,根據(jù)已知三視圖中標(biāo)識(shí)的數(shù)據(jù),求出棱柱的底面積和高,代入棱柱體積公式 即可得到答案.

解答 解:由三視圖可知,該幾何體是一個(gè)四棱柱,底面是平行四邊形(兩相鄰邊分別為2,4),側(cè)棱垂直于底面,且側(cè)棱柱等于4,
由俯視圖易知,底面平行四邊形邊2上的高為$\sqrt{15}$,
故該幾何體的體積是V=2×$\sqrt{15}$×4=8$\sqrt{15}$,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)三視圖判斷出幾何體的形狀及相應(yīng)底面面積和高是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為16+8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.平面α的斜線與α所成的角為30°,那此斜線和α內(nèi)所有不過(guò)斜足的直線中所成的角的最大值為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一位手機(jī)用戶前四次輸入四位數(shù)字手機(jī)密碼均不正確,第五次輸入密碼正確,手機(jī)解鎖.事后發(fā)現(xiàn)前四次輸入的密碼中,每次都有兩個(gè)數(shù)字正確,但它們各自的位置均不正確.已知前四次輸入密碼分別為3406,1630,7364,6173,則正確的密碼中一定含有數(shù)字( 。
A.4,6B.3,6C.3,7D.1,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知F1、F2分別為雙曲線C:$\frac{x^2}{4}-\frac{y^2}{5}$=1的左、右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2外接圓的面積為(  )
A.$\frac{4π}{15}$B.$\frac{16π}{15}$C.$\frac{64π}{15}$D.$\frac{256π}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”外接球的體積為$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一個(gè)放置在水平桌面上的正四棱柱的俯視圖如圖所示,其中α為銳角,則該幾何體的正視圖的面積的最大值為(  )
A.2或3B.2$\sqrt{3}$或3C.1或3D.2或2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.8+8πB.8+6πC.6+8πD.6+6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖正方形的四個(gè)頂點(diǎn)A(-1,-1),B(1,-1),C(1,1),D(-1,1)分別在拋物線y=-x2和y=x2上,求陰影區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案