2.已知函數(shù)y=x+$\frac{3}{x-2}$(x>2),當(dāng)x=2+$\sqrt{3}$,函數(shù)y有最小值是2$\sqrt{3}$+2.

分析 由題意可得x-2>0,整體代入可得y=x+$\frac{3}{x-2}$=x-2+$\frac{3}{x-2}$+2,由基本不等式可得.

解答 解:∵x>2,∴x-2>0,
∴y=x+$\frac{3}{x-2}$=x-2+$\frac{3}{x-2}$+2
≥2$\sqrt{(x-2)•\frac{3}{x-2}}$+2=2$\sqrt{3}$+2
當(dāng)且僅當(dāng)x-2=$\frac{3}{x-2}$即x=2+$\sqrt{3}$時(shí)取等號(hào).
故答案為:2+$\sqrt{3}$;;2$\sqrt{3}$+2

點(diǎn)評(píng) 本題考查基本不等式求最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合A={x|3≤x≤6,B={y|y=2x,2≤x<3}.
(1)分別求A∩B;(CRB)∪A
(2)已知C={x|a≤x≤a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知角α的終邊在射線(xiàn)y=-$\sqrt{3}x({x<0})$上,那么sinα等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x3+x2-x+1,求函數(shù)f(x)的單調(diào)減區(qū)間為(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.廢品率x%和每噸生鐵成本y(元)之間的回歸直線(xiàn)方程為$\stackrel{∧}{y}$=2x+256,這表明( 。
A.y與x的相關(guān)系數(shù)為2
B.y與x的關(guān)系是函數(shù)關(guān)系
C.廢品率每增加1%,生鐵成本每噸大約增加2元
D.廢品率每增加1%,生鐵成本大約增加258元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.?dāng)?shù)列{an}通項(xiàng)為${a_n}=ncos({\frac{nπ}{2}+\frac{π}{6}})$(n∈N*),Sn為其前n項(xiàng)的和,則S2015=504+502$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.關(guān)于x的不等式x2-(a+1)x+a<0的解集中,恰有3個(gè)整數(shù),則a的取值范圍是(  )
A.(4,5)B.(-3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)點(diǎn)B是A(2,3,5)關(guān)于坐標(biāo)平面xOy的對(duì)稱(chēng)點(diǎn),則B點(diǎn)坐標(biāo)為(2,3,-5),$|{\overrightarrow{AB}}|$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1(a>3)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(1,m)是該橢圓曲線(xiàn)上一點(diǎn),已知三角形F1F2P的周長(zhǎng)是18.
(1)求a的值;
(2)求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案