16.已知α是銳角,sin(2α+$\frac{π}{3}$)=$\frac{1}{3}$,則cos($\frac{π}{12}$-α)的值是(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

分析 利用誘導(dǎo)公式化簡(jiǎn)已知條件,然后

解答 解:cos($\frac{π}{6}$-2α)=sin(2α+$\frac{π}{3}$)=$\frac{1}{3}$,
∴cos($\frac{π}{12}$-α)=$\sqrt{\frac{cos(\frac{π}{6}-2α)+1}{2}}$=$\frac{\sqrt{6}}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查二倍角的余弦函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若函數(shù)f(x)=x+$\frac{1}{x}$+2a-1為奇函數(shù),則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.式子$\frac{m(m+1)(m+2)…(m+20)}{20!}$可表示為(  )
A.A${\;}_{m+20}^{20}$B.C${\;}_{m+20}^{20}$C.21C${\;}_{m+20}^{20}$D.21C${\;}_{m+20}^{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(λ,4λ-4),向量$\overrightarrow$=(2,4),若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$|等于( 。
A.4B.2$\sqrt{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求復(fù)數(shù)z=$\frac{{i}^{7}}{(\frac{\sqrt{3}}{2}-\frac{1}{2}i)^{2}•(1+i)^{4}}$的模長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中.A,B,C所對(duì)的邊分別為a,b,c,已知cos2C=-$\frac{1}{4}$.
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若在曲線y=a2x+x+1(a>0,且a≠1)上的點(diǎn)(0,m)處的切線與直線mx-y+1=0平行,則m+a=( 。
A.1+eB.1+$\sqrt{e}$C.2+eD.2+$\sqrt{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.由圖所示的函數(shù)圖象,求y=Asin(ωx+φ)(|φ|<π)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知兩定點(diǎn)M(-2,0),N(2,0),若直線kx-y=0上存在點(diǎn)P,使得|PM|-|PN|=2,則實(shí)數(shù)k的取值范圍是(-$\sqrt{3}$,$\sqrt{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案