7.式子$\frac{m(m+1)(m+2)…(m+20)}{20!}$可表示為(  )
A.A${\;}_{m+20}^{20}$B.C${\;}_{m+20}^{20}$C.21C${\;}_{m+20}^{20}$D.21C${\;}_{m+20}^{21}$

分析 根據(jù)$\frac{m(m+1)(m+2)…(m+20)}{20!}$=21•$\frac{m(m+1)(m+2)…(m+20)}{21!}$,結合組合數(shù)的公式即可得出結論.

解答 解:$\frac{m(m+1)(m+2)…(m+20)}{20!}$中,分式的分母是20!,
分子是21個連續(xù)自然數(shù)的乘積,且最大的為m+100,最小的為m,
故$\frac{m(m+1)(m+2)…(m+20)}{20!}$=21•$\frac{m(m+1)(m+2)…(m+20)}{21!}$=21•${C}_{m+20}^{21}$.
故選:D.

點評 本題考查了組合數(shù)公式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(1-x),且當x∈[0,1]時,f(x)=log2(x+1),則f(31)=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知復數(shù)z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i,則|z|等于( 。
A.2$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.從雙曲線$\frac{{x}^{2}}{a}$-y2=1的一個焦點F到向它的一條漸近線作垂線,垂足為A,O為原點.若△AOF的面積為1,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設Sn是數(shù)列{an}的前n項和,Sn=(-1)n•an-$\frac{1}{{2}^{n-1}}$,n∈N*,則S1+S2+…+S10=-$\frac{511}{768}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若tanα+cotα=4,則sin2α=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=cosx(2$\sqrt{3}$sinx-cosx)+asin2x的一個零點是$\frac{π}{12}$.
(1)求函數(shù)f(x)的最小正周期;
(2)令x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求此時f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知α是銳角,sin(2α+$\frac{π}{3}$)=$\frac{1}{3}$,則cos($\frac{π}{12}$-α)的值是( 。
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤2}\end{array}\right.$,目標函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點M(a,b)所經(jīng)過的區(qū)域面積=$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案