分析 (1)以E為原點,ED為x軸,EF為y軸,EB為z軸,建立空間直角坐標系,利用向量法能證明AD⊥平面AEF.
(2)求出平面EAC的法向量和平面ACF的法向量,由二面角E-AC-F的正弦值,利用向量法能求出EF的長.
解答 證明:(1)以E為原點,ED為x軸,EF為y軸,EB為z軸,建立空間直角坐標系,
A(1,0,1),D(2,0,0),E(0,0,0),設F(0,t,0),
則$\overrightarrow{AD}$=(1,0,-1),$\overrightarrow{EA}$=(1,0,1),$\overrightarrow{EF}$=(0,t,0),
$\overrightarrow{AD}•\overrightarrow{EA}$=1-1=0,$\overrightarrow{AD}•\overrightarrow{EF}$=0,
∴AD⊥EA,AD⊥EF,
∵EA∩EF=E,∴AD⊥平面AEF.
解:(2)∵三棱臺ABC-DEF中,△ABC∽△DEF,
∴$\frac{AB}{DE}=\frac{BC}{EF}$,∴C(0,$\frac{t}{2}$,1),
∴$\overrightarrow{EA}$=(1,0,1),$\overrightarrow{AC}$=(-1$\frac{t}{2}$,0),$\overrightarrow{AF}$=(-1,t,-1),
設平面EAC的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EA}=x+z=0}\\{\overrightarrow{m}•\overrightarrow{AC}=-x+\frac{t}{2}y=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,$\frac{2}{t}$,-1),
設平面ACF的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=-a+\frac{t}{2}b=0}\\{\overrightarrow{n}•\overrightarrow{AF}=-a+tb-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,$\frac{2}{t}$,1),
∵二面角E-AC-F的正弦值為$\frac{2\sqrt{2}}{3}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{4}{{t}^{2}}}{2+\frac{4}{{t}^{2}}}$=$\sqrt{1-(\frac{2\sqrt{2}}{3})^{2}}$=$\frac{1}{3}$,
解得t=2,或t=-2(舍),
∴EF的長為2.
點評 本題考查線面垂直的證明,考查線段長的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30 | B. | 25 | C. | 22 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8+5$\sqrt{3}$ | B. | 4+5$\sqrt{3}$ | C. | 12 | D. | 4+5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com