設橢圓C:(a>b>0)的左、右焦點分別為F1、F2,上頂點為A,離心率為,在x軸負半軸上有一點B,且=2

(1)若過A、B、F2三點的圓恰好與直線x-y-3=0相切,求橢圓C的方程;

(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

答案:
解析:

  解:(1)由題意,得,所以

  又,由于,所以的中點,

  所以

  所以的外接圓圓心為,半徑;3分

  又過三點的圓與直線相切,

  所以解得,

  所求橢圓方程為;6分

  (2)有(1)知,設的方程為:

  將直線方程與橢圓方程聯(lián)立

  ,整理得

  設交點為,因為

  則;8分

  若存在點,使得以為鄰邊的平行四邊形是菱形,

  由于菱形對角線垂直,所以().=0

  又

  又的方向向量是,故,則

  ,即

  由已知條件知;11分

  ,故存在滿足題意的點的取值范圍是;13分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題

設橢圓C:+=1(a>b>0)過點(0,4),離心率為.

(1)C的方程;

(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練22練習卷(解析版) 題型:選擇題

設橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F2,PC上的點,PF2F1F2,PF1F2=30°,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:專項題 題型:解答題

設橢圓C:(a>b>0)的離心率為e=,點A是橢圓上的一點,且點A到橢圓C兩焦點的距離之和為4,
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C上一動點P(x0,y0)關于直線y=2x的對稱點為P1(x1,y1),求3x1-4y1的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:=1(a>b>0)過點(1,),F1、F2分別為橢圓C的左、右兩個焦點,且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M、N兩點,若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點,△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:=1(a>b>0)過點(1,),F1、F2分別為橢圓C的左、右兩個焦點,且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M、N兩點.若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點,△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

同步練習冊答案