已知水平地面上有一半徑為4的籃球(球心
),在斜平行光線的照射下,其陰影為一
橢圓(如圖),在平面直角坐標系中,
為原點,
所在直線為
軸,設橢圓的方程為
,籃球與地面的接觸點為
,且
,則橢圓的離心率為______.
解:在照射過程中,橢圓的短半軸長是圓的半徑,
由圖∠O′AB+∠O′BA="1" /2 (∠A′AB+∠B′BA)="1/" 2 ×180°=90°
∴∠AO′B=90°,由O是中點故有
球心到橢圓中心的距離是橢圓的長半軸,
過球心向地面做垂線,垂足是H,
在構成的直角三角形中,OO′
2=OH
2+O′H
2,
∴OH=
=
,
故答案為:
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓
過點
,且離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
為橢圓
的左、右頂點,直線
與
軸交于點
,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.證明:
恒為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)已知橢圓的焦點是
和
,又過點
.
(1)求橢圓的離心率;
(2)又設點
在這個橢圓上,且
,求
的余弦的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
C:
的離心率為
,且過點Q(1,
).
(1) 求橢圓
C的方程;
(2) 若過點
M(2,0)的直線與橢圓
C相交于
A,B兩點,設
P點在直線
上,且滿足
(
O為坐標原點),求實數(shù)
t的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)設橢圓
:
過點(0,4),離心率為
.
(1)求
的方程;
(2)求過點(3,0)且斜率為
的直線被
所截線段的中點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
,直線
過橢圓左焦點
且不與
軸重合,
與橢圓交于
,兩點,當
與
軸垂直時,
,若點
且
(1)求橢圓
的方程;
(2)直線
繞著
旋轉,與圓
交于
兩點,若
,求
的面積
的取值范圍(
為橢圓的右焦點)。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,
是橢圓
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設
是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的離心率為
,則實數(shù)
的值為___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設
是橢圓
的不垂直于對稱軸的弦,
為
的中點,
為坐標原點,則
____________
查看答案和解析>>