(本題滿分12分)已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點,直線軸交于點,點是橢圓上異于
的動點,直線分別交直線兩點.證明:恒為定值.
(Ⅰ). (Ⅱ)為定值.證明見解析。
本試題主要是考出了橢圓方程的求解,橢圓的幾何性質,直線與橢圓的位置關系的運用的綜合考查,體現(xiàn)了運用代數(shù)的方法解決解析幾何的本質的運用。
(1)首先根據題意的幾何性質來表示得到關于a,b,c的關系式,從而得到其橢圓的方程。
(2設出直線方程,設點P的坐標,點斜式得到AP的方程,然后聯(lián)立方程組,可知借助于韋達定理表示出長度,進而證明為定值。
(Ⅰ)解:由題意可知,,
解得.       …………4分
所以橢圓的方程為.     …………5分
(Ⅱ)證明:由(Ⅰ)可知,,.設,依題意,
于是直線的方程為,令,則.
.              …………7分
又直線的方程為,令,則
.              …………9分
 …………11分
上,所以,即,代入上式,
,所以為定值.         …………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

從橢圓 上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB//OP,,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)
已知直線與橢圓相交于A、B兩點.
(Ⅰ)若橢圓的離心率為,焦距為2,求線段AB的長;
(Ⅱ)若向量與向量互相垂直(其中O為坐標原點),當橢圓的離心率 時,求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓長軸上有一點到兩個焦點之間的距離分別為:3+2,3-2
(1)求橢圓的方程;
(2)如果直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線
BD的交點K必在一條確定的雙曲線上;
(3)過點Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點,與y軸交于點R,、若
,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.設點P是橢圓上的一點,點M、N分別是兩圓:上的點,則的最小值、最大值分別為(    )
A.6,8B.2,6
C.4,8D.8,12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知點在以坐標軸為對稱軸的橢圓上,點到兩焦點的距離分別為4和2,過點作焦點所在軸的垂線,它恰好過橢圓的一個焦點,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知水平地面上有一半徑為4的籃球(球心),在斜平行光線的照射下,其陰影為一
橢圓(如圖),在平面直角坐標系中,為原點,所在直線為軸,設橢圓的方程為
,籃球與地面的接觸點為,且,則橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點分別為,下頂點為,點是橢圓上任一點,圓是以為直徑的圓.
⑴當圓的面積為,求所在的直線方程;
⑵當圓與直線相切時,求圓的方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點, 則m的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案