分析 (1)求出極坐標(biāo)系中點(diǎn)(1,1)的直角坐標(biāo),得到圓C的直角坐標(biāo)方程,利用x=ρcosθ,y=ρsinθ轉(zhuǎn)化為極坐標(biāo)方程;
(2)把(1)中的極坐標(biāo)方程極角$-\frac{π}{2}$,利用三角函數(shù)的誘導(dǎo)公式整理得答案.
解答 解:(1)在對(duì)應(yīng)的直角坐標(biāo)系中,圓心的坐標(biāo)為(cos1,sin1),
∴圓的直角坐標(biāo)方程為:(x-cos1)2+(y-sin1)2=1,即x2+y2-2xcos1-2ysin1=0,
由x=ρcosθ,y=ρsinθ,可得:ρ2=2ρcos1cosθ+2ρsin1sinθ,
∴ρ=2(cos1cosθ+sin1sinθ)=2cos(θ-1).
即圓C的方程ρ=2cos(θ-1);
(2)將圓C繞極點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{2}$,得到圓D:$ρ=2cos(θ-1-\frac{π}{2})=-2sin(1-θ)$,
即ρ=2sin(θ-1).
點(diǎn)評(píng) 本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,考查了直角坐標(biāo)和極坐標(biāo)的互化,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | π | D. | 2π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com