已知函數(shù)f(x)=xlnx,g(x)=(-x2+ax-3)ex(a為實(shí)數(shù)).
(Ⅰ)當(dāng)a=5時(shí),求函數(shù)y=g(x)在x=1處的切線方程;
(Ⅱ)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(Ⅲ)若存在兩不等實(shí)根x1,x2∈[
1
e
,e],使方程g(x)=2exf(x)成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)把a(bǔ)=5代入函數(shù)g(x)的解析式,求出導(dǎo)數(shù),得到g(1)和g′(1),由直線方程的點(diǎn)斜式得切線方程;
(Ⅱ)利用導(dǎo)數(shù)求出函數(shù)f(x)在[t,t+2]上的單調(diào)區(qū)間,求出極值和區(qū)間端點(diǎn)值,比較大小后得到
f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(Ⅲ)把f(x)和g(x)的解析式代入g(x)=2exf(x),分離變量a,然后構(gòu)造函數(shù)h(x)=x+2lnx+
3
x
,由導(dǎo)數(shù)求出其在[
1
e
,e]上的最大值和最小值,則實(shí)數(shù)a的取值范圍可求.
解答: 解:(Ⅰ)當(dāng)a=5時(shí),g(x)=(-x2+5x-3)-ex,g(1)=e.
g′(x)=(-x2+3x+2)-ex,故切線的斜率為g′(1)=4e
∴切線方程為:y-e=4e(x-1),即y=4ex-3e;
(Ⅱ)f′(x)=lnx+1,
x (0,
1
e
)
1
e
(
1
e
,+∞)
f'(x) - 0 +
f(x) 單調(diào)遞減 極小值(最小值) 單調(diào)遞增
①當(dāng)t≥
1
e
時(shí),在區(qū)間(t,t+2)上f(x)為增函數(shù),
∴f(x)min=f(t)=tlnt;                                      
②當(dāng)0<t<
1
e
時(shí),在區(qū)間(t,
1
e
)
上f(x)為減函數(shù),在區(qū)間(
1
e
,e)
上f(x)為增函數(shù),
f(x)min=f(
1
e
)=-
1
e
;                                     
(Ⅲ) 由g(x)=2exf(x),可得:2xlnx=-x2+ax-3,
a=x+2lnx+
3
x
,
h(x)=x+2lnx+
3
x
,h(x)=1+
2
x
-
3
x2
=
(x+3)(x-1)
x2

x (
1
e
,1)
1 (1,e)
h′(x) - 0 +
h(x) 單調(diào)遞減 極小值(最小值) 單調(diào)遞增
h(
1
e
)=
1
e
+3e-2
,h(1)=4,h(e)=
3
e
+e+2

h(e)-h(
1
e
)=4-2e+
2
e
<0

∴使方程g(x)=2exf(x)存在兩不等實(shí)根的實(shí)數(shù)a的取值范圍為4<a≤e+2+
3
e
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,關(guān)鍵在于由導(dǎo)函數(shù)的符號(hào)確定原函數(shù)的單調(diào)性,考查利用構(gòu)造函數(shù)法求解含字母系數(shù)的范圍問題,解答的技巧是分類字母系數(shù),是高考試卷中的壓軸題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)g(x)=ax滿足:g(-3)=
1
8
,定義域?yàn)镽的函數(shù)f(x)=
g(x)-1
g(x)+m
是奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)在其定義域上的單調(diào)性,并求函數(shù)的值域;
(3)若不等式:t•f(x)≥4x-2x+2+3對(duì)x∈[1,2]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù)
(1)求a的值
(2)討論關(guān)于x的方程
lnx
f(x)
=x2-2ex+m
的根的函數(shù)
(3)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+3.
(1)當(dāng)x>0時(shí),方程f(x)=-1有解,求a的最小值;
(2)當(dāng)x∈[0,4]時(shí),不等式f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在區(qū)間[0,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0有
f(a)+f(b)
a+b
>0
恒成立.
(1)判斷f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若f(x)≤m2-2am+1,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.
(Ⅰ) 求實(shí)數(shù)b的值,及點(diǎn)A的坐標(biāo);
(Ⅱ) 求過點(diǎn)B(0,-1)的拋物線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓經(jīng)過點(diǎn)A(-1,1)和B(-2,-2),且圓心在直線l:x+y-1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P在圓C上,點(diǎn)Q在直線x-y+5=0上,求PQ的最小值;
(3)若直線kx-y+5=0被圓C所截得弦長為8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的圖象與y=ln
x
-1的圖象關(guān)于y=x對(duì)稱,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案