已知等比數(shù)列{an}的公比q≠1,則下面說法中不正確的是( 。
A、{an+2+an}是等比數(shù)列
B、對于k∈N*,k>1,ak-1+ak+1≠2ak
C、對于n∈N*,都有anan+2>0
D、若a2>a1,則對于任意n∈N*,都有an+1>an
考點:等比數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列的通項,對選項分別進行分析,即可得出結(jié)論.
解答: 解:對于A,{an+2+an}是公比為q2的等比數(shù)列,正確;
對于B,對于k∈N*,k>1,ak-1+ak+1=
ak
q
+akq,∵q≠1,∴ak-1+ak+1≠2ak,正確‘
對于C,anan+2=an2q2>0,正確;
對于D,若a2>a1,a>1,則對于任意n∈N*,都有an+1>an,故不正確,
故選:D.
點評:本題考查等比數(shù)列的通項,考查學生分析解決問題的能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a>0,b<0,方程x2-ax+b=0在區(qū)間(-1,1)上恰有一根,求
a+1
b+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在二項式(x3-
1
x
n(n∈N*)的展開式中,常數(shù)項為28,則n的值為( 。
A、12B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a1=5,a10=41,則S11=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x-1>lnx.命題q:?x∈R,
x
>0,則( 。
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題p∧(¬q)是真命題
D、命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)z1,z2∈C.
(1)求證:|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;
(2)設(shè)|z1|=3,|z2|=5,|z1+z2|=6,求|z1-z2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,已知D點在直線A1B上,AD⊥平面A1BC.
(Ⅰ)求證:BC⊥AB;
(Ⅱ)若BC=2,AB=4,AD=2
3
,P為AC邊的中點,求三棱錐P-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)不等式組
x≤3
y≤4
4x+3y≥12
所表示的平面區(qū)域為D.若圓C落在區(qū)域D中,則圓C的半徑r的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知R是實數(shù)集,M={x|
2
x
<1},N={y|y=
x-1
},則(CRM)∩N=( 。
A、(1,2)
B、[1,2]
C、[1,2)
D、[0,2]

查看答案和解析>>

同步練習冊答案