【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關(guān)系如圖(1);投資股票等風(fēng)險型產(chǎn)品的一年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3:1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+)(ω>0,||<)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 2 | -2 | 0 |
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卷上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)若f()=,求cos(2α+)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1P=A1C1 , 連接AP交棱CC1于點D. (Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣a|, (Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2﹣a|對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)在(1)的條件下,求證:;
(3)當(dāng)時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論
函數(shù)的最大值為;
已知函數(shù)且在上是減函數(shù),則a的取值范圍是;
在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于y軸對稱;
在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于直線對稱.
其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),學(xué)校組織體育社團(tuán),某宿舍有4人積極報名參加籃球和足球社團(tuán),每人只能從兩個社團(tuán)中選擇其中一個社團(tuán),大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己參加哪個社團(tuán),擲出點數(shù)為5或6的人參加籃球社團(tuán),擲出點數(shù)小于5的人參加足球社團(tuán).
(Ⅰ)求這4人中恰有1人參加籃球社團(tuán)的概率;
(Ⅱ)用分別表示這4人中參加籃球社團(tuán)和足球社團(tuán)的人數(shù),記隨機(jī)變量為和的乘積,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com