【題目】已知函數(shù),.
(Ⅰ)求證:曲線(xiàn)與在處的切線(xiàn)重合;
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)見(jiàn)證明(Ⅱ)
【解析】
(Ⅰ)分別對(duì)兩函數(shù)求導(dǎo),求出兩函數(shù)在處切線(xiàn)的斜率,再利用點(diǎn)斜式求出切線(xiàn)的直線(xiàn)方程,就可以證明曲線(xiàn)與在處的切線(xiàn)重合;
(Ⅱ)方法1:構(gòu)造 對(duì)求導(dǎo)得到,對(duì)進(jìn)行分類(lèi)討論,利用函數(shù)的單調(diào)性,綜合分析,最后求出實(shí)數(shù)的取值范圍。
方法2:可得(),構(gòu)造新函數(shù)
設(shè),求導(dǎo),對(duì)進(jìn)行分類(lèi)討論,利用函數(shù)的單調(diào)性,綜合分析,最后求出實(shí)數(shù)的取值范圍。
證明:(Ⅰ)
在處的切線(xiàn)方程為
在處的切線(xiàn)方程為
所以切線(xiàn)重合.
(Ⅱ)(方法1):令
①當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取“”,
在遞減,,不恒成立.
②當(dāng)時(shí),,
(i)當(dāng)時(shí),時(shí),,遞減,
,在遞減,
,不恒成立.
(ii)當(dāng)時(shí),,在遞增,
,在遞增,
,恒成立.
綜上,.
(Ⅱ)(方法2):
,
(),
設(shè),
,,在遞減, ,與已知矛盾
,
①,, 在遞增,滿(mǎn)足題意
②當(dāng)時(shí), ,,在遞減,,
不滿(mǎn)足題意
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過(guò)定點(diǎn),且與直線(xiàn)相切,圓心C的軌跡為E,曲線(xiàn)E與直線(xiàn)l:()相交于A,B兩點(diǎn).
(1)求曲線(xiàn)E的方程;
(2)當(dāng)的面積等于時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別為雙曲線(xiàn)的左、右焦點(diǎn),M為雙曲線(xiàn)右支上一點(diǎn)且滿(mǎn)足,若直線(xiàn)與雙曲線(xiàn)的另一個(gè)交點(diǎn)為N,則的面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線(xiàn)上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AC過(guò)定點(diǎn)F(2,0),且與直線(xiàn)x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線(xiàn)l交E與P,Q兩點(diǎn),且線(xiàn)段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某市高三學(xué)生的身體情況,某健康研究協(xié)會(huì)對(duì)該市高三學(xué)生組織了兩次體測(cè),其中第一次體測(cè)的成績(jī)(滿(mǎn)分:100分)的頻率分布直方圖如下圖所示,第二次體測(cè)的成績(jī).
(Ⅰ)試通過(guò)計(jì)算比較兩次體測(cè)成績(jī)平均分的高低;
(Ⅱ)若該市有高三學(xué)生20000人,記體測(cè)成績(jī)?cè)?0分以上的同學(xué)的身體素質(zhì)為優(yōu)秀,假設(shè)這20000人都參與了第二次體測(cè),試估計(jì)第二次體測(cè)中身體素質(zhì)為優(yōu)秀的人數(shù);
(Ⅲ)以頻率估計(jì)概率,若在參與第一次體測(cè)的學(xué)生中隨機(jī)抽取4人,記這4人成績(jī)?cè)?/span>的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)圓錐內(nèi)作一個(gè)內(nèi)接等邊圓柱(一個(gè)底面在圓錐的底面上,且軸截面是正方形的圓柱),再在等邊圓柱的上底面截得的小圓錐內(nèi)做一個(gè)內(nèi)接等邊圓柱,這樣無(wú)限的做下去.
(1)證明這些等邊圓柱的體積從大到小排成一個(gè)等比數(shù)列;
(2)已知這些等邊圓柱的體積之和為原來(lái)圓錐體積的,求最大的等邊圓柱的體積與圓錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是長(zhǎng)方體,O是B1D1的中點(diǎn),直線(xiàn)A1C交平面AB1D1于點(diǎn)M,則下列結(jié)論正確是( )
A.A,M,O三點(diǎn)共線(xiàn)B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn),且與坐標(biāo)軸形成的三角形面積為.求:
(1)求證:不論為何實(shí)數(shù),直線(xiàn)過(guò)定點(diǎn)P;
(2)分別求和時(shí),所對(duì)應(yīng)的直線(xiàn)條數(shù);
(3)針對(duì)的不同取值,討論集合直線(xiàn)經(jīng)過(guò)P,且與坐標(biāo)軸圍成的三角形面積為中的元素個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com