3.小敏打開計算機時,忘記了開機密碼的前兩位,只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機的概率是( 。
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

分析 列舉出從M,I,N中任取一個字母,再從1,2,3,4,5中任取一個數(shù)字的基本事件數(shù),然后由隨機事件發(fā)生的概率得答案.

解答 解:從M,I,N中任取一個字母,再從1,2,3,4,5中任取一個數(shù)字,取法總數(shù)為:
(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)共15種.
其中只有一個是小敏的密碼前兩位.
由隨機事件發(fā)生的概率可得,小敏輸入一次密碼能夠成功開機的概率是$\frac{1}{15}$.
故選:C.

點評 本題考查隨機事件發(fā)生的概率,關(guān)鍵是列舉基本事件總數(shù)時不重不漏,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若矩形ABCD的四個頂點在E上,AB,CD的中點為E的兩個焦點,且2|AB|=3|BC|,則E的離心率是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$.
(Ⅰ)證明:sinAsinB=sinC;
(Ⅱ)若b2+c2-a2=$\frac{6}{5}$bc,求tanB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式$\sqrt{{a}^{2}-{x}^{2}}$<2x+a(a>0)的解集是(  )
A.{x|0<x≤a}B.{x|x>0或x<-$\frac{4}{5}$a}
C.{x|-$\frac{a}{2}$<x<a}D.{x|-a≤x<-$\frac{4}{5}$a或0<x≤a}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若{an}是等差數(shù)列,若a1+a10=21,S10=105.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是y=2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=-2,an+1=2an+1(n∈N*),則an=-2n-1-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=sinx-$\sqrt{3}$cosx的圖象可由函數(shù)y=sinx+$\sqrt{3}$cosx的圖象至少向右平移$\frac{2π}{3}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某網(wǎng)店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有16種;
②這三天售出的商品最少有29種.

查看答案和解析>>

同步練習冊答案