14.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$.
(Ⅰ)證明:sinAsinB=sinC;
(Ⅱ)若b2+c2-a2=$\frac{6}{5}$bc,求tanB.

分析 (Ⅰ)將已知等式通分后利用兩角和的正弦函數(shù)公式整理,利用正弦定理,即可證明.
(Ⅱ)由余弦定理求出A的余弦函數(shù)值,利用(Ⅰ)的條件,求解B的正切函數(shù)值即可.

解答 (Ⅰ)證明:在△ABC中,∵$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$,
∴由正弦定理得:$\frac{cosA}{sinA}+\frac{cosB}{sinB}=\frac{sinC}{sinC}$,
∴$\frac{cosAsinB+cosBsinA}{sinAsinB}$=$\frac{sin(A+B)}{sinAsinB}=1$,
∵sin(A+B)=sinC.
∴整理可得:sinAsinB=sinC,
(Ⅱ)解:b2+c2-a2=$\frac{6}{5}$bc,由余弦定理可得cosA=$\frac{3}{5}$.
sinA=$\frac{4}{5}$,$\frac{cosA}{sinA}$=$\frac{3}{4}$
$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{sinC}{sinC}$=1,$\frac{cosB}{sinB}$=$\frac{1}{4}$,
tanB=4.

點評 本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,三角形面積公式的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=( 。
A.{1,3}B.{3,5}C.{5,7}D.{1,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標(biāo)為(2-p,-p);
②求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點P($\sqrt{3}$,$\frac{1}{2}$)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點O且斜率為$\frac{1}{2}$的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:︳MA︳•︳MB︳=︳MC︳•︳MD︳

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面內(nèi),定點A,B,C,D滿足$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,動點P,M滿足$|\overrightarrow{AP}|$=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是( 。
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè){an}是首項為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對任意的正整數(shù)n,a2n-1+a2n<0”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)拋物線$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t為參數(shù),p>0)的焦點為F,準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點E.若|CF|=2|AF|,且△ACE的面積為3$\sqrt{2}$,則p的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.小敏打開計算機時,忘記了開機密碼的前兩位,只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機的概率是( 。
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a>0,b>0,若關(guān)于x,y的方程組$\left\{\begin{array}{l}{ax+y=1}\\{x+by=1}\end{array}\right.$無解,則a+b的取值范圍為(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案