9.求函數(shù)f(x)=(x+1)3ex+1的極值.

分析 令x+1=u,從而可得g(u)=u3eu,從而求導(dǎo)可證明g(u)=u3eu在(-∞,-3)上是減函數(shù),在(-3,+∞)上是增函數(shù);從而求極值即可.

解答 解:令x+1=u,
則函數(shù)f(x)=(x+1)3ex+1可化為g(u)=u3eu,
g′(u)=3u2eu+u3eu=u2eu(3+u),
∴當(dāng)u<-3時,g′(u)<0,
當(dāng)u≥-3時,g′(u)≥0,
故g(u)=u3eu在(-∞,-3)上是減函數(shù),
在(-3,+∞)上是增函數(shù);
故函數(shù)g(u)在u=-3時有極小值g(-3)=-$\frac{27}{{e}^{3}}$;
故函數(shù)f(x)=(x+1)3ex+1的極值為g(-3)=-$\frac{27}{{e}^{3}}$.

點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的極值的求法及應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=k(x+1)2-ln(x+1)(k∈R).
(1)當(dāng)k=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若x軸是曲線y=f(x)的一條切線,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖中的曲線是指數(shù)函數(shù)的圖象,已知a的值分別取$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$,則相應(yīng)于曲線C1,C2,C3,C4的a依次為( 。
A.$\frac{4}{3}$,$\sqrt{2}$,$\frac{1}{5}$,$\frac{3}{10}$B.$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$C.$\frac{3}{10}$,$\frac{1}{5}$,$\sqrt{2}$,$\frac{4}{3}$D.$\frac{1}{5}$,$\frac{3}{10}$,$\frac{4}{3}$,$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若cosA=$\frac{4}{5}$,tan(A-B)=-$\frac{1}{2}$,則tanB=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,記P=$\frac{{a}_{2}+{a}_{10}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,則P與Q的大小關(guān)系是( 。
A.P<QB.P>QC.P=QD.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知定義域為(-1,1)的函數(shù)f(x)是減函數(shù),且f(a-3)-f(a2-9)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}為等差數(shù)列,且a5=14,a7=20.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}的通項公式為bn=$\frac{1}{{{a}_{n}a}_{n+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在四面體ABCD中,AB=3,BC=7,CD=11,DA=9.則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為( 。
A.0B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=4,an+1=Sn+3n,n∈N*,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案