【題目】如圖,在四棱錐中,,,,O的中點.

1)證明:平面

2)若,,,求二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)取的中點F,連接,易得,由線面垂直判定定理可得平面,進而,再將與線面垂直判定定理相結(jié)合即可得結(jié)果.

2)建立如圖所示的空間直角坐標系,可求出平面的一個法向量,取平面的一個法向量,根據(jù)圖象結(jié)合即可得結(jié)果.

1)證明:取的中點F,連接.

因為F的中點,所以.

因為O中點,F的中點,所以.

因為,所以,

因為,平面,平面,所以平面.

平面,所以.

因為,O的中點,所以.

因為平面,平面

所以平面.

2)解:以O為坐標原點,所在直線為x軸,平行的直線為y軸,所在直線為z軸建立如圖所示的空間直角坐標系,∵

,∴

,,,,,

因為,所以

,.

設(shè)平面的法向量,則

不妨取,則

平面的一個法向量,記二面角的大小為,

由圖可知為銳角,則.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中有5只同型號的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:

(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;

(Ⅱ)求至少有一次取到二等品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,拋物線的焦點是,是拋物線上的點,H為直線上任一點,A,B分別為橢圓C的上下頂點,且A,B,H三點的連線可以構(gòu)成三角形.

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線HA,HB與橢圓C的另一交點分別為點D,E,求證:直線DE過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓經(jīng)過點,左、右焦點分別是,,點在橢圓上,且滿足點只有兩個.

(Ⅰ)求橢圓的方程;

(Ⅱ)過且不垂直于坐標軸的直線交橢圓,兩點,在軸上是否存在一點,使得的角平分線是軸?若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:

編號

1

2

3

4

5

年份

2015

2016

2017

2018

2019

單價(元/公斤)

18

20

23

25

29

藥材的收購價格始終為20/公斤,其畝產(chǎn)量的頻率分布直方圖如下:

1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計2020年藥材的單價;

2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應種植藥材還是藥材?并說明理由.

參考公式:,(回歸方程中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,EAD中點,FCC1中點.

1)求證:ADD1F

2)求證:CE//平面AD1F;

3)求AA1與平面AD1F成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某時間段車流量與濃度的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

39

40

42

44

45

1)根據(jù)上表數(shù)據(jù),求出這五組數(shù)據(jù)組成的散點圖的樣本中心坐標;

2)用最小二乘法求出關(guān)于的線性回歸方程

3)若周六同一時間段車流量是100萬輛,試根據(jù)(2)求出的線性回歸方程預測,此時的濃度是多少?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,橢圓離心率為,、是橢圓C的短軸端點,且到焦點的距離為,點M在橢圓C上運動,且點M不與、重合,點N滿足

(1)求橢圓C的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:

異面直線間的距離為定值;

三棱錐的體積為定值;

異面直線與直線所成的角為定值;

二面角的大小為定值.

其中真命題有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案