【題目】如圖,在四棱錐中,,,,,O為的中點.
(1)證明:平面;
(2)若,,,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點F,連接,易得,,由線面垂直判定定理可得平面,進而,再將與線面垂直判定定理相結(jié)合即可得結(jié)果.
(2)建立如圖所示的空間直角坐標系,可求出平面的一個法向量,取平面的一個法向量,根據(jù)圖象結(jié)合即可得結(jié)果.
(1)證明:取的中點F,連接.
因為,F為的中點,所以.
因為O為中點,F為的中點,所以.
因為,所以,
因為,平面,平面,所以平面.
又平面,所以.
因為,O為的中點,所以.
因為,平面,平面,
所以平面.
(2)解:以O為坐標原點,所在直線為x軸,平行的直線為y軸,所在直線為z軸建立如圖所示的空間直角坐標系,∵,
∴,∴,
則,,,,,
因為,所以,
故,.
設(shè)平面的法向量,則
不妨取,則
平面的一個法向量,記二面角的大小為,
由圖可知為銳角,則.
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中有5只同型號的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,拋物線的焦點是,是拋物線上的點,H為直線上任一點,A,B分別為橢圓C的上下頂點,且A,B,H三點的連線可以構(gòu)成三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線HA,HB與橢圓C的另一交點分別為點D,E,求證:直線DE過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓經(jīng)過點,左、右焦點分別是,,點在橢圓上,且滿足的點只有兩個.
(Ⅰ)求橢圓的方程;
(Ⅱ)過且不垂直于坐標軸的直線交橢圓于,兩點,在軸上是否存在一點,使得的角平分線是軸?若存在求出,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植,兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
單價(元/公斤) | 18 | 20 | 23 | 25 | 29 |
藥材的收購價格始終為20元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:
(1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計2020年藥材的單價;
(2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應種植藥材還是藥材?并說明理由.
參考公式:,(回歸方程中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,E為AD中點,F為CC1中點.
(1)求證:AD⊥D1F;
(2)求證:CE//平面AD1F;
(3)求AA1與平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某時間段車流量與濃度的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 39 | 40 | 42 | 44 | 45 |
(1)根據(jù)上表數(shù)據(jù),求出這五組數(shù)據(jù)組成的散點圖的樣本中心坐標;
(2)用最小二乘法求出關(guān)于的線性回歸方程;
(3)若周六同一時間段車流量是100萬輛,試根據(jù)(2)求出的線性回歸方程預測,此時的濃度是多少?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,橢圓離心率為,、是橢圓C的短軸端點,且到焦點的距離為,點M在橢圓C上運動,且點M不與、重合,點N滿足.
(1)求橢圓C的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com