分析 (1)通過(guò)$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n}}{{a}_{n}}$=2n+1與$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n-1}}{{a}_{n-1}}$=2n-1作差,進(jìn)而驗(yàn)證當(dāng)n=1是否成立即可;
(2)利用等比數(shù)列的求和公式可知當(dāng)n≥2時(shí)數(shù)列{bn}的前n項(xiàng)和Tn,進(jìn)而代入計(jì)算即得結(jié)論.
解答 解:(1)∵$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n}}{{a}_{n}}$=2n+1,
∴當(dāng)n≥2時(shí),$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n-1}}{{a}_{n-1}}$=2n-1,
兩式相減得:$\frac{_{n}}{{a}_{n}}$=2,
∵an=3n-1,
∴bn=2•3n-1(n≥2),
又∵$\frac{_{1}}{{a}_{1}}$=$\frac{_{1}}{1}$=3,即b1=3不滿足上式,
∴bn=$\left\{\begin{array}{l}{3,}&{n=1}\\{2•{3}^{n-1},}&{n≥2}\end{array}\right.$;
(2)記數(shù)列{bn}的前n項(xiàng)和為Tn,則
Tn=3+2•31+2•32+…+2•3n-1
=3+2•$\frac{3(1-{3}^{n-1})}{1-3}$
=3n,
∴b1+b2+b3+…+b2015=32015.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查分類討論的思想,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(2019)<f(2014)<f(2017) | B. | f(2017)<f(2014)<f(2019) | ||
C. | f(2014)<f(2017)<f(2019) | D. | f(2019)<f(2017)<f(2014) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com