分析 cn=b2n-1+b2n=$\frac{9}{2}$×4n.證明$\frac{{c}_{n+1}}{{c}_{n}}$為非0常數(shù)即可.
解答 證明:cn=b2n-1+b2n=3×22n-1+3×22n=$\frac{9}{2}$×4n.
∴$\frac{{c}_{n+1}}{{c}_{n}}$=$\frac{\frac{9}{2}×{4}^{n+1}}{\frac{9}{2}×{4}^{n}}$=4,
∴{cn}是等比數(shù)列,首項(xiàng)為18,公比為4.
點(diǎn)評(píng) 本題考查了等比數(shù)列的定義及其通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(0,$\frac{π}{2}$)上單調(diào)遞增 | B. | f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調(diào)遞減 | ||
C. | f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減 | D. | f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {(-1,1),(1,1)} | B. | [0,2] | C. | [0,1] | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com