【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,函數(shù)g(x)=( x(﹣1≤x≤0)的值域?yàn)榧螧.
(1)求A∩B;
(2)若集合C=[a,2a﹣1],且C∪B=B,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:要使函數(shù)f(x)= 有意義,

則log2(x﹣1)≥0,解得x≥2,

∴其定義域?yàn)榧螦={x|x≥2}.

函數(shù)g(x)=( x(﹣1≤x≤0)的值域?yàn)榧螧={x|1≤x≤2},

∴A∩B={2}


(2)解:∵C∪B=B,∴CB.

由題意2a﹣1>a,即a>1時(shí),要使CB,則

解得1<a≤


【解析】(1)A是函數(shù)的定義域,只要解不等式log2(x﹣1)≥0即得,B是函數(shù)的值域,由指數(shù)函數(shù)的單調(diào)性可得;(2)條件C∪B=B,等價(jià)于CB,C是B的子集,即可求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用集合的交集運(yùn)算和函數(shù)的定義域及其求法的相關(guān)知識可以得到問題的答案,需要掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x|﹣3≤x<6},B={x|2<x<9}.
(1)求A∩B,A∪(RB);
(2)已知C={x|a<x<2a+1},若CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a=20.5 , b=log43,c=log20.2,則(
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x=
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線右支上一點(diǎn),直線AD與其左支交于點(diǎn)E,若 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.,當(dāng)每輛車的月租金定為x元時(shí),租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷是否95%的把握認(rèn)為以歲為界點(diǎn)的不同人群對“延遲退休年齡政策”的支持有差異;

(2)若以歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取人參加某項(xiàng)活動,現(xiàn)從這人中隨機(jī)抽人.

①抽到人是歲以下時(shí),求抽到的另一人是歲以上的概率;

②記抽到歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,并根據(jù)

(1)寫出函數(shù)f(x)(x∈R)的增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案