已知3a2+2b2=5,試求y=
2a2+1
b2+2
的最大值.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:先提取出
4
3
,進(jìn)而利用基本不等式求得y的最大值.
解答: 解:y=
4
3
3
2
a2+
3
4
b2+2
2
3
3
3
2
a2+
3
4
+b2+2
2
=
2
3
3
×
21
4
2
=
7
3
4

3
2
a2+
3
4
=b2+2時(shí)取等號(hào).
點(diǎn)評(píng):本題主要考查了基本不等式的運(yùn)用.解題的關(guān)鍵是利用已知構(gòu)造出和為定值來.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),A(-3,-4),B(5,-12),若
OC
=
OA
+
OB
,
OD
=
OA
-
OB

(Ⅰ)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(Ⅱ)求
OC
OD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).
(Ⅰ)求證:AE⊥PB;
(Ⅱ)求PB與面PAC所成角的正切值;
(Ⅲ)求異面直線PB與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=3n,數(shù)列{bn}滿足b1=-1,bn+1=bn+2n-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求
1
b3
+
1
b4
+
1
b5
+…+
1
bn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點(diǎn),AB=AC.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面B1DC⊥平面CBB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(ax2-2x)•ex,其中a≥0.
(Ⅰ)當(dāng)a=
4
3
時(shí),求f(x)的極值點(diǎn);
(Ⅱ)若f(x)在[-1,1]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解青少年視力情況,某市從高考體檢中隨機(jī)抽取16名學(xué)生的視力進(jìn)行調(diào)查,經(jīng)醫(yī)生用對(duì)數(shù)視力表檢查得到每個(gè)學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如圖所示.
(1)若視力測(cè)試結(jié)果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機(jī)選取3人,至多有1人是“好視力”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計(jì)該市所有參加高考學(xué)生的總體數(shù)據(jù),若從該市參加高考的學(xué)生中任選3人,記ξ表示抽到“好視力”學(xué)生的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,
5
sin2A-(2
5
+1)sinA+2=0,A是銳角,求cot2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為
π
2
;
②若銳角α,β滿足cosα>sinβ,則α+β<
π
2

③若α,β均為第一象限角,且α>β,則sinα>sinβ;
④要得到函數(shù)y=sin(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個(gè)單位;
則以上所有真命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案