設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(diǎn)(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
(1)減區(qū)間為,增區(qū)間為
(2)
【解析】(1)由已知,
所以,
由,得,
所以,在區(qū)間上,,
函數(shù)在區(qū)間上單調(diào)遞減;
在區(qū)間上,,
函數(shù)在區(qū)間上單調(diào)遞增;
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719510400754411/SYS201411171951040544842559_DA/SYS201411171951040544842559_DA.011.png">,
所以曲線在點(diǎn)處切線為:.
切線與軸的交點(diǎn)為,與軸的交點(diǎn)為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719510400754411/SYS201411171951040544842559_DA/SYS201411171951040544842559_DA.020.png">,所以,
,
在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.
所以,當(dāng)時(shí),有最大值,此時(shí),
所以,的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測(cè)題(解析版) 題型:解答題
設(shè).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項(xiàng)訓(xùn)練(解析版) 題型:選擇題
數(shù)列是公差不為0的等差數(shù)列,且為等比數(shù)列的連續(xù)三項(xiàng),則數(shù)列的公比為( )
A. B.4 C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科證明不等式(解析版) 題型:選擇題
已知a,b為非零實(shí)數(shù),則使不等式:成立的一個(gè)充分而不必要條件是( )
A. ab>0
B. ab<0
C. a>0,b<0
D. a>0,b>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題后三題(解析版) 題型:解答題
已知函數(shù),且.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
設(shè)等差數(shù)列{an}的首項(xiàng)a1為a,公差d=2,前n項(xiàng)和為Sn.
(1) 若當(dāng)n=10時(shí),Sn取到最小值,求的取值范圍;
(2) 證明:n∈N*, Sn,Sn+1,Sn+2不構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
設(shè)數(shù)列{}的前n項(xiàng)和為,且.
⑴證明數(shù)列{}為等比數(shù)列
⑵求{}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科線性規(guī)劃(解析版) 題型:選擇題
若實(shí)數(shù)滿足,則的值域是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科相互獨(dú)立事件(解析版) 題型:選擇題
甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝,根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是( )
A.0.216 B.0.36 C.0.432 D.0.648
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com