已知f(x)是定義在[-4,e]上的函數(shù),f(x)=
|lnx|,0<x≤e
x2+2x-2,-4≤x≤0

(1)在坐標系上畫出f(x)的圖象
(2)寫出f(x)的單調增區(qū)間
(3)若m=f(x)有兩解,求m的取值范圍.
考點:利用導數(shù)研究函數(shù)的單調性
專題:導數(shù)的綜合應用
分析:(1)根據對數(shù)函數(shù)和二次函數(shù)的性質及定義域即可畫出圖象,(2)(3)可通過讀圖直接得出.
解答: 解:(1)如圖示:
,
(2)由圖象得:在(-1,0),(1,e)上函數(shù)f(x)遞增,
(3)m=f(x)有兩解即y=m和y=f(x)有兩個交點,
由圖象得:-3<m≤-2,或1<m≤6.
點評:本題考查了函數(shù)的圖象及性質,考查函數(shù)的單調性,考查轉化思想,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c為三條互相平行的直線,α,β為兩不重合平面,a⊆α,b⊆β,c⊆β,則α與β的關系是( 。
A、相交B、平行
C、平行或相交D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=-x2+2ax與g(x)=
a-3
x+1
在區(qū)間[1,2]上都是增函數(shù),則a的取值范圍是( 。
A、[2,+∞)
B、(-∞,3)
C、(-∞,3)∪[2,+∞)
D、[2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A、B是單位圓O上的動點,且A、B分別在第一、二象限.C是圓O與x軸正半軸的交點,△AOB為正三角形.記∠AOC=α.
(1)若A點的坐標為(
3
5
,
4
5
),求
3-cos2α+sinαcosα
1+sin2α
的值;
(2)求|BC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知⊙O是四邊形ABCD的外接圓,AD=BC,E是AB延長線上一點,且BE×DC=AD×BC.
(Ⅰ)證明:AB∥CD;
(Ⅱ)求∠OCE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,
3
-
3
cos2x),
b
=(2cosx,1),定義f(x)=
a
b

(1)求函數(shù)y=f(x),x∈R的單調遞減區(qū)間;
(2)若函數(shù)y=f(x+θ)(0<θ<
π
2
)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+3bx2+3cx的兩個極值點為x1,x2,x1∈[-1,0],x2∈[1,2].證明:0≤f(x1)≤
7
2
,-10≤f(x2)≤-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)點P在拋物線y2=4x上,
(1)若點P到焦點的距離為5,求點P的坐標;
(2)若點P到直線y=x+3的距離最短,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當a≠0時,求函數(shù)f(x)的極小值.

查看答案和解析>>

同步練習冊答案