已知向量
a
=(sinx,
3
-
3
cos2x),
b
=(2cosx,1),定義f(x)=
a
b

(1)求函數(shù)y=f(x),x∈R的單調(diào)遞減區(qū)間;
(2)若函數(shù)y=f(x+θ)(0<θ<
π
2
)為偶函數(shù),求θ的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專(zhuān)題:平面向量及應(yīng)用
分析:(1)利用向量的數(shù)量積先求出f(x)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,求出函數(shù)的單調(diào)區(qū)間,
(2)先求出f(x+θ)的解析式,再根據(jù)偶函數(shù)的性質(zhì)求出x的值,再根據(jù)函數(shù)的極值求得θ的值.
解答: 解:(1)f(x)=
a
b
=(sinx,
3
-
3
cos2x)•(2cosx,1)
=2sinxcosx+
3
-
3
cos2x=sin2x-
3
cos2x+
3
,
=2sin(2x-
π
3
)+
3
,
由2kπ+
π
2
<2x-
π
3
<2kπ+
2
 (k∈Z),
得kπ+
12
<x<kπ+
11π
12
,
所以所求單調(diào)遞減區(qū)間為(kπ+
12
,kπ+
11π
12
),(k∈Z),
(2)∵y=f(x+θ)=2sin(2x+2θ-
π
3
)+
3
為偶函數(shù),
∴2θ-
π
3
=kπ+
π
2
 (k∈Z),
即θ=
2
+
12
,
又0<θ<
π
2
,
所以θ=
12
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積的運(yùn)算和三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體的內(nèi)切球與外接球的半徑之比為(  )
A、1:3B、1:9
C、1:27D、1:81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c(x∈[-1,2]),且函數(shù)f(x)在x=1和x=-
2
3
處都取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+clnx(其中a,b,c為實(shí)常數(shù))
(1)當(dāng)b=0,c=1時(shí),討論f(x)的單調(diào)區(qū)間;
(2)曲線y=f(x)(其中a>0)在點(diǎn)(1,f(1))處的切線方程為y=3x-3
①若函數(shù)f(x)無(wú)極值點(diǎn)且方程f′(x)=0有解,求a,b,c的值;
②若函數(shù)f(x)有兩個(gè)極值點(diǎn),證明f(x)的極值點(diǎn)小于-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-4,e]上的函數(shù),f(x)=
|lnx|,0<x≤e
x2+2x-2,-4≤x≤0

(1)在坐標(biāo)系上畫(huà)出f(x)的圖象
(2)寫(xiě)出f(x)的單調(diào)增區(qū)間
(3)若m=f(x)有兩解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
(a>0)
(1)若函數(shù)f(x)的極大值為2,極小值為-2,試求a,b的值;
(2)在(1)的條件下,若函數(shù)g(x)=k(x-
1
3
),試討論函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(ax+1)+
2
x+1
-1(x≥0,a>0).
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+1)+ax2-x,a∈R.
(Ⅰ)當(dāng)a=
1
4
時(shí),求函數(shù)y=f(x)的極值;
(Ⅱ)是否存在實(shí)數(shù)b∈(0,1),使得當(dāng)x∈(-1,b]時(shí),函數(shù)f(x)的最大值為f(b)?若存在,求實(shí)數(shù)a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案