15.觀察數(shù)組:(1,1,1),(3,2,6),(5,4,20),(7,8,56),(a,b,c),…,則a+b+c=169.

分析 易知數(shù)組的第1個(gè)數(shù)依次成等差數(shù)列,第2個(gè)數(shù)依次成等比數(shù)列,且這兩個(gè)數(shù)列的通項(xiàng)公式分別為an=2n-1,${b_n}={2^{n-1}}$,第3個(gè)數(shù)為該數(shù)組前2個(gè)數(shù)的積,即可得出結(jié)論.

解答 解:易知數(shù)組的第1個(gè)數(shù)依次成等差數(shù)列,第2個(gè)數(shù)依次成等比數(shù)列,
且這兩個(gè)數(shù)列的通項(xiàng)公式分別為an=2n-1,${b_n}={2^{n-1}}$,第3個(gè)數(shù)為該數(shù)組前2個(gè)數(shù)的積.
∴a=a5=9,∴b=b5=16,∴c=ab=144,∴a+b+c=169.
故答案為169.

點(diǎn)評 此題考查數(shù)字的變化規(guī)律,通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若sinA:sinB:sinC=7:8:13,則角C=( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,∠A的內(nèi)角平分線交BC于D,用正弦定理證明:$\frac{AB}{AC}$=$\frac{BD}{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在(0,2π)內(nèi),使|sinx|≥cosx成立的x的取值范圍是[$\frac{π}{4}$,$\frac{7π}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5為實(shí)數(shù),則a2=-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知扇形的半徑為1cm,圓心角為30°,則該扇形的面積為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$y=\frac{1}{3}{x^3}-3x+m$的圖象與x軸恰有兩個(gè)公共點(diǎn),則m=(  )
A.-1或2B.-9或3C.-1或1D.-$2\sqrt{3}$或$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,若ac=$\frac{1}{4}$b2,sin A+sin C=t sin B,且B為銳角,則實(shí)數(shù)t 的取值范圍是($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax.
(Ⅰ)若函數(shù)f(x)在x=1處的切線與x軸平行,求a的值;
(Ⅱ)若a=2,求函數(shù)f(x)在x=1處的切線方程;
(Ⅲ)若a=1,請列出表格求函數(shù)f(x)的極大值.

查看答案和解析>>

同步練習(xí)冊答案