18.已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為($\sqrt{3}$,0).
(1)求雙曲線C的方程;
(2)若直線l:y=x+2與雙曲線交于A,B兩點,求弦長|AB|.

分析 (1)確定雙曲線的幾何量,即可求雙曲線C的方程;
(2)由直線與雙曲線聯(lián)立得2x2+12x+15=0,解得x=-3±$\frac{\sqrt{6}}{2}$,利用弦長公式,即可求弦長|AB|.

解答 解:(1)由已知得a=$\sqrt{3}$,c=2,再由c2=a2+b2,得b2=1,
所以雙曲線C的方程為$\frac{{x}^{2}}{3}$-y2=1.
(2)由直線與雙曲線聯(lián)立得2x2+12x+15=0,解得x=-3±$\frac{\sqrt{6}}{2}$.
∴|AB|=$\sqrt{1+1}•\sqrt{6}$=2$\sqrt{3}$.

點評 本題考查雙曲線的方程,考查直線與雙曲線的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計算下列梯形的面積,上底為a,下底為b,高為h,請寫出該問題的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.比較$\frac{{a}^{2}+^{2}}{2}$與($\frac{a+b}{2}$)2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(-4)=f(1)=0,則不等式f(x)<0的解集是( 。
A.(-4,-1)∪(1,4)B.(-∞,-4)∪(-1,1)∪(4,+∞)C.(-∞,-4)∪(-1,0)∪(1,4)D.(-4,-1)∪(0,1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知P是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的一個動點,且點P與橢圓長軸兩頂點連線的斜率之積為-$\frac{1}{4}$,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{a-i}$(a∈R)在復(fù)平面內(nèi)對應(yīng)的點位于直線x+2y=0上,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,已知動點T到點A(-4,0),B(-1,0)的距離比為2.
(1)求動點T的軌跡方程Γ;
(2)已知點P是直線l:y=x與曲線Γ在第一象限內(nèi)的交點,過點P引兩條直線分別交曲線Γ于Q,R,且直線PQ,PR的傾斜角互補,試判斷直線QR的斜率是否為定值,若是定值,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=8,an+1-an=n(n∈N*),則$\frac{a_n}{n}$取最小值時n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)的定義域為(0,+∞),且在其上為增函數(shù),滿足f(xy)=f(x)+f(y),f(2)=1,不等式f(x)+f(x-2)<3的解集是{x|2<x<4}.

查看答案和解析>>

同步練習(xí)冊答案