分析 (1)確定雙曲線的幾何量,即可求雙曲線C的方程;
(2)由直線與雙曲線聯(lián)立得2x2+12x+15=0,解得x=-3±$\frac{\sqrt{6}}{2}$,利用弦長公式,即可求弦長|AB|.
解答 解:(1)由已知得a=$\sqrt{3}$,c=2,再由c2=a2+b2,得b2=1,
所以雙曲線C的方程為$\frac{{x}^{2}}{3}$-y2=1.
(2)由直線與雙曲線聯(lián)立得2x2+12x+15=0,解得x=-3±$\frac{\sqrt{6}}{2}$.
∴|AB|=$\sqrt{1+1}•\sqrt{6}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查雙曲線的方程,考查直線與雙曲線的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,-1)∪(1,4) | B. | (-∞,-4)∪(-1,1)∪(4,+∞) | C. | (-∞,-4)∪(-1,0)∪(1,4) | D. | (-4,-1)∪(0,1)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com