12.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,2),$\overrightarrow{c}$=(-1,3),若($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,則實(shí)數(shù)x的值為( 。
A.-$\frac{11}{3}$B.-17C.12D.13

分析 利用已知條件求出$\overrightarrow{a}$+2$\overrightarrow$,然后利用向量的平行列出方程求解x即可、

解答 解:向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,2),$\overrightarrow{c}$=(-1,3),
$\overrightarrow{a}$+2$\overrightarrow$=(x+2,5),
∵($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,
∴3x+6=-5,
解得x=$-\frac{11}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查向量的共線以及坐標(biāo)運(yùn)算,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a、b∈R,ab≠0,函數(shù)f(x)=$\frac{ax}{x+b}$圖象的對(duì)稱中心坐標(biāo)為(-1,1).
(1)求a、b的值;
(2)若P(x,y)是函數(shù)y=f(x)圖象上的動(dòng)點(diǎn),且x<-1,試求OP(O為坐標(biāo)原點(diǎn))的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y+1≥0\\ x+4y-4≥0\end{array}\right.$,則z=|x|+|y-3|的取值范圍是[1,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知三棱錐P-ABC的四個(gè)頂點(diǎn)都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥平面ABC,則球O的表面積為( 。
A.$\frac{40π}{3}$B.$\frac{50π}{3}$C.12πD.15π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題的得分情況.乙組某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x,已知甲、乙兩組的平均成績相同.
(1)求x的值,并判斷哪組學(xué)生成績更穩(wěn)定;
(2)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知程序框圖如圖所示,則該程序框圖的功能是( 。
A.求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$的值B.求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$…+$\frac{1}{20}$的值
C.求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$的值D.求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$…+$\frac{1}{22}$的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)到一條漸近線的距離為a,則雙曲線的離心率等于( 。
A.$\frac{\sqrt{2}}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.閱讀如圖的程序框圖,若輸出的y=$\frac{1}{2}$,則輸入的x的值可能為(  )
A.-1B.0C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是函數(shù)$f(x)=Asin(2x+φ)(A>0,|φ|≤\frac{π}{2})$圖象的一部分,對(duì)不同的x1,x2∈[a,b],若f(x1)=f(x2),有$f({x_1}+{x_2})=\sqrt{3}$,則φ的值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案