函數(shù)y=
3x-1
+
1
1-x
的定義域是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由根式內(nèi)部的代數(shù)式大于等于0且分式的分母不等于0聯(lián)立不等式組求解x的取值集合得答案.
解答: 解:要使函數(shù)游意義,x應(yīng)滿足:
3x-1≥0
1-x≠0
,得x≥
1
3
且x≠1.
∴函數(shù)的定義域?yàn)閧x|x≥
1
3
且x≠1}.
故答案為:{x|x≥
1
3
且x≠1}.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答下列問題:
(1)求全班人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù);
(2)不看莖葉圖中的具體分?jǐn)?shù),僅根據(jù)頻率分布直方圖估計(jì)該班的平均分?jǐn)?shù);
(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩個(gè)函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個(gè)函數(shù)為“同形”函數(shù),給出下列四個(gè)函數(shù):f1(x)=log4x2,f2(x)=log2(x+2),f3(x)=log22x,f4(x)=log2|x+2|則“同形”函數(shù)是( 。
A、f1(x)與f2(x)
B、f2(x)與f3(x)
C、f2(x)與f4(x)
D、f1(x)與f4(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=3x2+bx+c是偶函數(shù),則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xsinθ+y+3=0的傾斜角的取值范圍是( 。
A、[-
π
4
,
π
4
]
B、[
π
4
4
]
C、[0,
π
4
]∪(
π
2
,
4
D、[0,
π
4
]∪[
4
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+2(x≤-1)
x2(-1<x<2)
,若f(x)=3,則x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2),
b
=(1+m,1-m),若
a 
b
,則m的值為( 。
A、-3B、3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°.側(cè)面PAD是一等邊三角形,且平面PAD⊥底面ABCD,G是AD的中點(diǎn).
(1)求證:BG⊥平面PAD;
(2)取AB、PC的中點(diǎn)M、N,求證:MN∥平面PAD;
(3)求二面角A-BC-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用計(jì)算器,列出自變量和函數(shù)值的對(duì)應(yīng)值如表:
x-1.2-1-0.8-0.6-0.4-0.20
y=2x0.43520.50.57430.65970.75780.87051
y=x21.4410.640.360.160.040
那么方程2x=x2有一個(gè)根位于的區(qū)間是
 

①(-1.2,-1)②(-1,-0.8)③(-0.8,-0.6)④(-0.6,-0.4)⑤(-0.4,-0.2)⑥(-0.2,0)

查看答案和解析>>

同步練習(xí)冊答案