【題目】我國(guó)政府對(duì)PM2.5采用如下標(biāo)準(zhǔn):

某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉).

1)求這10天數(shù)據(jù)的中位數(shù).

2)從這10天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;

3)以這10天的PM2.5日均值來(lái)估計(jì)這180天的空氣質(zhì)量情況,記為這180天空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的均值.

【答案】141;(2)分布列見(jiàn)解析;(372

【解析】

1)直接根據(jù)中位數(shù)的概念計(jì)算得到答案.

2的可能值為,,計(jì)算概率得到分布列.

3)根據(jù)題意得到,計(jì)算平均值得到答案.

1)由莖葉圖知:10天的中位數(shù)為(微克/立方米).

2)根據(jù)題意知,的可能值為,

利用即得分布列:

0

1

2

3

P

3)一年中每天空氣質(zhì)量達(dá)到一級(jí)的概率為,

,得到(天),

∴一年中空氣質(zhì)量達(dá)到一級(jí)的天數(shù)為72.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)的內(nèi)角、、的對(duì)邊分別為、,又,且銳角滿足,若,邊的中點(diǎn),求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AD的中點(diǎn),點(diǎn)P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點(diǎn)P到點(diǎn)C1的最短距離是(

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出停課不停學(xué)的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不少于120分的有10人,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

10

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān);

2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年鄭開國(guó)際馬拉松比賽,于2019331日在鄭州、開封舉行.某學(xué)校本著我運(yùn)動(dòng),我快樂(lè),我鍛煉,我提高精神,積極組織學(xué)生參加比賽及相關(guān)活動(dòng),為了了解學(xué)生的參與情況,從全校學(xué)生中隨機(jī)抽取了150名學(xué)生,對(duì)是否參與的情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

會(huì)參與

不會(huì)參與

男生

60

40

女生

20

30

1)根據(jù)上表說(shuō)明,能否有97.5%的把握認(rèn)為參與馬拉松賽事與性別有關(guān)?

2)現(xiàn)從參與問(wèn)卷調(diào)查且參與賽事的學(xué)生中,采用按性別分層抽樣的方法選取8人參加2019年馬拉松比賽志愿者宣傳活動(dòng),

①求男、女學(xué)生各選取多少人;

②若從這8人中隨機(jī)選取2人到校廣播站開展2019年賽事宣傳介紹,求恰好選到2名男生的概率.

附:參考公式:,其中

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0),F1,F2為橢圓的左右焦點(diǎn),過(guò)F2的直線交橢圓與AB兩點(diǎn),∠AF1B90°,2,則橢圓的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線C的漸近線方程為,一個(gè)焦點(diǎn)為F0,﹣8),則該雙曲線的標(biāo)準(zhǔn)方程為_____.已知點(diǎn)A(﹣6,0),若點(diǎn)PC上一動(dòng)點(diǎn),且P點(diǎn)在x軸上方,當(dāng)點(diǎn)P的位置變化時(shí),△PAF的周長(zhǎng)的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)圓與圓外切,并與直線相切,則動(dòng)圓圓心的軌跡方程為__________,過(guò)點(diǎn)作傾斜角互補(bǔ)的兩條直線,分別與圓心的軌跡相交于,兩點(diǎn),則直線的斜率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn)、以軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,若直線與曲線交于兩點(diǎn).

1)求線段的中點(diǎn)的直角坐標(biāo);

2)設(shè)點(diǎn)是曲線上任意一點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案