【題目】定義,,,倒平均數(shù).

1)若數(shù)列項(xiàng)的倒平均數(shù),求的通項(xiàng)公式;

2)設(shè)數(shù)列滿(mǎn)足:當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),.項(xiàng)的倒平均數(shù),求;

3)設(shè)函數(shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立?若存在,求出最大的實(shí)數(shù);若不存在,說(shuō)明理由.

【答案】1;(2;(3)存在,

【解析】

1)根據(jù)定義求得數(shù)列的前項(xiàng)和.再根據(jù)和項(xiàng)與通項(xiàng)關(guān)系求出的通項(xiàng)公式.

2)先根據(jù)為偶數(shù)和為奇數(shù)時(shí),分別求出數(shù)列的前項(xiàng)和,再根據(jù)定義求出,最后求出.

3)先化簡(jiǎn)不等式得對(duì)任意恒成立,再根據(jù)數(shù)列單調(diào)性求最小值,最后根據(jù)不等式解集推導(dǎo)出存在最大的實(shí)數(shù)

1)設(shè)數(shù)列的前項(xiàng)和為,

由題意,,

所以.

所以,當(dāng)時(shí),,

也滿(mǎn)足此式.

所以的通項(xiàng)公式為.

2)設(shè)數(shù)列的前項(xiàng)和為,則當(dāng)為偶數(shù)時(shí),,

當(dāng)為奇數(shù)時(shí),.

所以,

所以.

3)假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立,

對(duì)任意恒成立,

,因?yàn)?/span>,

所以數(shù)列是遞增數(shù)列,

所以只要,即,

解得.

所以存在最大的實(shí)數(shù),

使得當(dāng)時(shí),對(duì)任意恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著計(jì)算機(jī)的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計(jì)算機(jī)應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計(jì)算機(jī)圖形.如圖所示的圖標(biāo)是一種被稱(chēng)之為“黑白太陽(yáng)”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個(gè)全等的矩形,每一個(gè)矩形的長(zhǎng)為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個(gè)“黑白太陽(yáng)”圖標(biāo)中隨機(jī)取一點(diǎn),則此點(diǎn)取自圖標(biāo)第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子商務(wù)平臺(tái)的管理員隨機(jī)抽取了1000位上網(wǎng)購(gòu)物者,并對(duì)其年齡(在10歲到69歲之間)進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,,三個(gè)年齡段的上網(wǎng)購(gòu)物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)主力軍”,其他年齡段內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取5人,再?gòu)倪@5人中抽取2人,求這2人中至少有一人是消費(fèi)潛力軍的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)作直線與拋物線交于,兩點(diǎn),點(diǎn)滿(mǎn)足,過(guò)軸的垂線與拋物線交于點(diǎn),若,則點(diǎn)的橫坐標(biāo)為__________,__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某地區(qū)年齡在25~55歲的人員中,隨機(jī)抽出100人,了解他們對(duì)今年兩會(huì)的熱點(diǎn)問(wèn)題的看法,繪制出頻率分布直方圖如圖所示,則下列說(shuō)法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20

B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30

C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40

D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4

1)求橢圓的方程;

2)若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),求的面積之差的絕對(duì)值的最大值,并求取得最大值時(shí)直線的方程.為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為

(1)求橢圓C的方程

(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)常數(shù).在平面直角坐標(biāo)系xOy中,已知點(diǎn),直線l:,曲線Γ:,).l與x軸交于點(diǎn)A、與Γ交于點(diǎn)B.P、Q分別是曲線Γ與線段AB上的動(dòng)點(diǎn).

(1)用t表示點(diǎn)B到點(diǎn)F的距離;

(2)設(shè),線段OQ的中點(diǎn)在直線FP上,求△AQP的面積;

(3)設(shè),是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點(diǎn)E在Γ上?若存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線有一個(gè)公共點(diǎn).

1)求拋物線方程;

2)斜率不為0的直線經(jīng)過(guò)拋物線的焦點(diǎn),交拋物線于兩點(diǎn),.拋物線上是否存在兩點(diǎn)關(guān)于直線對(duì)稱(chēng)?若存在,求出的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案