【題目】對(duì)于非空實(shí)數(shù)集A,定義對(duì)任意.設(shè)非空實(shí)數(shù)集.現(xiàn)給出以下命題:(1)對(duì)于任意給定符合題設(shè)條件的集合C,D,必有;(2)對(duì)于任意給定符合題設(shè)條件的集合C,D,必有;(3)對(duì)于任意給定符合題設(shè)條件的集合C,D,必有;(4)對(duì)于任意給定符合題設(shè)條件的集合C,D,必存在常數(shù)a,使得對(duì)任意的,恒有.以上命題正確的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)題干新定義對(duì)任意,通過(guò)分析舉例即可判斷。

1)對(duì)任意,根據(jù)題意,對(duì)任意,有,因?yàn)?/span>,所以對(duì)任意的,一定有,所以,,(1)正確;

2)如,則,但,(2錯(cuò)誤;

3)如,則,但,3)錯(cuò)誤;

4)首先對(duì)任意集合,由定義知一定有最小值,又由(1,設(shè),的最小值分別為,即,只要取

則對(duì)任意的,即 ,(4)正確;

所以(1(4)正確

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+ =0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中, ,則其前n項(xiàng)和Sn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015全國(guó)統(tǒng)考II)設(shè)函數(shù)f(x)=ln(1+|x|)-,則使得f(x)f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,(1,+
C.(-,
D.(-,-,+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:=2sin , C3:=2cos
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:=2sin , C3:=2cos
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E、F分別在A1B1、C1D1上,A1E=D1F=4,過(guò)點(diǎn)E,F的平面與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形。

(1)(Ⅰ)在圖中畫出這個(gè)正方形(不必說(shuō)出畫法和理由);
(2)(Ⅱ)求直線AF與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示,若將運(yùn)動(dòng)員按成績(jī)由好到差編為號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績(jī)?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中點(diǎn),0是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖2.

(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱錐A1-BCDE的體積為36,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案