【題目】中國(guó)倉(cāng)儲(chǔ)指數(shù)是反映倉(cāng)儲(chǔ)行業(yè)經(jīng)營(yíng)和國(guó)內(nèi)市場(chǎng)主要商品供求狀況與變化趨勢(shì)的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( )

A. 2018年1月至4月的倉(cāng)儲(chǔ)指數(shù)比2017年同期波動(dòng)性更大

B. 2017年、2018年的最大倉(cāng)儲(chǔ)指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉(cāng)儲(chǔ)指數(shù)平均值明顯低于2017年

D. 2018年各月倉(cāng)儲(chǔ)指數(shù)的中位數(shù)與2017年各月倉(cāng)儲(chǔ)指數(shù)中位數(shù)差異明顯

【答案】D

【解析】

根據(jù)折線圖逐一驗(yàn)證各選項(xiàng).

通過圖象可看出,20181月至4月的倉(cāng)儲(chǔ)指數(shù)比2017年同期波動(dòng)性更大, 這兩年的最大倉(cāng)儲(chǔ)指數(shù)都出現(xiàn)在4月份, 2018年全年倉(cāng)儲(chǔ)指數(shù)平均值明顯低于2017,所以選項(xiàng)A,BC的結(jié)論都正確;2018年各倉(cāng)儲(chǔ)指數(shù)的中位數(shù)與2017年各倉(cāng)儲(chǔ)指數(shù)中位數(shù)基本在52%, ∴選項(xiàng)D的結(jié)論錯(cuò)誤.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若關(guān)系式中變量是變量的函數(shù),則稱函數(shù)為可變換函數(shù).例如:對(duì)于函數(shù),,所以變量是變量的函數(shù),所以是可變換函數(shù).

(1)求證:反比例函數(shù)不是可變換函數(shù);

(2)試判斷函數(shù)是否是可變換函數(shù)并說明理由;

(3)若函數(shù)為可變換函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn . 已知S3=a22 , 且S1 , S2 , S4成等比數(shù)列,求{an}的通項(xiàng)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,設(shè)各局中雙方獲勝的概率均為 ,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(1)求第4局甲當(dāng)裁判的概率;
(2)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 設(shè), 若|g(x)|-af(x)+a≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是美籍法國(guó)數(shù)學(xué)家伯努瓦..曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,如圖是按照一定的分形規(guī)律生產(chǎn)成一個(gè)數(shù)形圖,則第13行的實(shí)心圓點(diǎn)的個(gè)數(shù)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案