分析 (1)由數列{an}的前n項和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N+.利用遞推關系即可得出.
(2)bn=4${\;}^{{a}_{n}}$-4an=2n+1-2(n+1),利用等差數列與等比數列的前n項和公式即可得出.
解答 解:(1)∵數列{an}的前n項和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N+.
∴n=1時,a1=S1=1.
n≥2時,an=Sn-Sn-1=$\frac{{n}^{2}+3n}{4}$-$\frac{(n-1)^{2}+3(n-1)}{4}$=$\frac{n+1}{2}$.n=1時也成立.
∴an=$\frac{n+1}{2}$.
(2)bn=4${\;}^{{a}_{n}}$-4an=2n+1-2(n+1),
∴數列{bn}的前n項和=(22+23+…+2n+1)-2(2+3+…+n+1)
=$\frac{4({2}^{n}-1)}{2-1}$-2×$\frac{n(n+3)}{2}$
=2n+2-4-n2-3n.
點評 本題考查了等差數列與等比數列的前n項和公式、遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{1}{3}$,2) | B. | (-2,3) | C. | (-2,2) | D. | (-6,-2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,$\frac{4}{3}$] | B. | [-2,$\frac{4}{3}$] | C. | [0,6] | D. | [-2,6] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ${C}_{10}^{1}$•${C}_{5}^{1}$種 | B. | ${A}_{10}^{1}$•${A}_{5}^{1}$種 | C. | ${C}_{15}^{2}$種 | D. | ${A}_{15}^{2}$種 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com