7.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=m+2cosα\\ y=2sinα\end{array}$(α為參數(shù),m為常數(shù)).以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.若直線l與圓C有兩個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

分析 求出直線和圓的普通方程,令圓心到直線的距離小于圓C的半徑解出m.

解答 解:圓C的普通方程為(x-m)2+y2=4.所以圓C的圓心為C(m,0),半徑為2.
直線l的極坐標(biāo)方程化為ρ($\frac{\sqrt{2}}{2}$cosθ+$\frac{\sqrt{2}}{2}$sinθ)=$\sqrt{2}$,
即$\frac{\sqrt{2}}{2}$x+$\frac{\sqrt{2}}{2}$y=$\sqrt{2}$,化簡(jiǎn)得x+y-2=0.   
所以圓心到直線l的距離d=$\frac{|m-2|}{\sqrt{2}}$,
所以d=$\frac{|m-2|}{\sqrt{2}}$<2,
解得2-2$\sqrt{2}$<m<2+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明.對(duì)于任意兩個(gè)向量$\overrightarrow{a}$,$\overrightarrow$都有||$\overrightarrow{a}$|-|$\overrightarrow$||≤|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={(x,y)|x,y,1-x-y是三角形的三邊長(zhǎng)},若z=kx+2y的取值范圍為(1,$\frac{5}{2}$),則k的值為( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}中,a1=-60,an+1=an+4.
(1)求通項(xiàng)an;
(2)求Sn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1:$\left\{\begin{array}{l}x=3+2cosθ\\ y=4+2sinθ\end{array}\right.$(θ為參數(shù))和曲線C2:ρ=2上,則|AB|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),M是曲線C1上的動(dòng)點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}=2\overrightarrow{OM}$,
(1)求點(diǎn)P的軌跡方程C2;
(2)在以O(shè)為極點(diǎn),X軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{3}$與曲線C1,C2交于不同于原點(diǎn)的點(diǎn)A,B求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10.曲線 c1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(Ⅰ)求曲線c1的普通方程;
(Ⅱ)若點(diǎn)M在曲線C1上運(yùn)動(dòng),試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線C1:y2=2x與橢圓C2:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1在第一象限交于點(diǎn)A,直線y=$\sqrt{2}$x+m與橢圓C2交于B、D兩點(diǎn),且A,B,D三點(diǎn)兩兩互不重合.
(1)求m的取值范圍;
(2)△ABD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖示,A,B分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn),F(xiàn)為其右焦點(diǎn),2是|AF與|FB|的等差中項(xiàng),$\sqrt{3}$是|AF|與|FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A、B的任一動(dòng)點(diǎn),過點(diǎn)A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.
(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過該定點(diǎn)N?若存在,求出N點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案