分析 求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的極大值和極小值,從而求出大值與極小值之積即可.
解答 解:f′(x)=(2-x2)ex,
令f′(x)>0,解得:-$\sqrt{2}$<x<$\sqrt{2}$,
令f′(x)<0,解得:x>$\sqrt{2}$或x<-$\sqrt{2}$,
∴f(x)在(-∞,-$\sqrt{2}$)遞減,在(-$\sqrt{2}$,$\sqrt{2}$)遞增,在($\sqrt{2}$,+∞)遞減,
∴f(x)極大值=f($\sqrt{2}$)=2($\sqrt{2}$-1)${e}^{\sqrt{2}}$,f(x)極小值=f(-$\sqrt{2}$)=-2($\sqrt{2}$+1)${e}^{-\sqrt{2}}$,
∴∴f(x)極大值•f(x)極小值=f($\sqrt{2}$)•f(-$\sqrt{2}$)=[2($\sqrt{2}$-1)${e}^{\sqrt{2}}$]•[-2($\sqrt{2}$+1)${e}^{-\sqrt{2}}$]=-4,
故答案為:-4.
點評 本題考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,e] | B. | (-∞,-$\frac{1}{e}$) | C. | (-∞,-$\frac{1}{e}$]∪{0} | D. | (-∞,-$\frac{1}{e}$]∪{0,e} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com