14.偶函數(shù)f(x)的周期為3,當(dāng)x∈[0,1]時(shí),f(x)=3x,則$\frac{f(lo{g}_{3}54)}{f(2015)}$的值為$\frac{2}{3}$.

分析 利用函數(shù)的周期,以及函數(shù)的表達(dá)式,求解表達(dá)式的法則與分母,推出結(jié)果即可.

解答 解:偶函數(shù)f(x)的周期為3,當(dāng)x∈[0,1]時(shí),f(x)=3x
∵f(log354)=f(3+log32)=f(log32)=${3}^{lo{g}_{3}2}$=2,
f(2015)=f(671×3+2)=f(2)=f(-1)=f(1)=3,
∴$\frac{f(lo{g}_{3}54)}{f(2015)}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性以及函數(shù)的周期性的應(yīng)用,考查函數(shù)以及方程的綜合應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為( 。
A.y=x-1B.y=lnxC.y=x3D.y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=$\sqrt{\frac{1+x}{1-x}}$+lg(3-4x+x2)的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求f(x)=4x+2x+2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓臺(tái)的兩個(gè)底面面積分別為4π和25π,圓臺(tái)的高為4,求圓臺(tái)的體積與側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a=2π-3,b=log32,c=ln0.99,那么a,b,c的大小關(guān)系為(  )
A.a>b>cB.a>c>bC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線y=x-1的斜率等于( 。
A.-1B.1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,5),則2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為(5,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸).一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中a的值;
( II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
( III)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),則每位居民的月均用水量x在哪一組?,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$(a+1)x2+x-$\frac{1}{3}$(a∈R).
(1)若a<0,求函數(shù)f(x)的極值;
(2)當(dāng)a≤$\frac{1}{2}$時(shí),判斷函數(shù)f(x)在區(qū)間[0,2]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案