根據(jù)下列條件求拋物線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在x軸上,焦點(diǎn)到準(zhǔn)線的距離為6;
(2)準(zhǔn)線方程:x=-
5
2
考點(diǎn):拋物線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)可設(shè)拋物線方程為:y2=±2px,由題意得,p=6,可得拋物線方程;
(2)可設(shè)拋物線方程為:y2=2px,由準(zhǔn)線方程可得p,即可得到拋物線方程.
解答: 解:(1)可設(shè)拋物線方程為:y2=±2px,
由題意得,p=6,
則拋物線方程為y2=±12x;
(2)可設(shè)拋物線方程為:y2=2px,
由準(zhǔn)線方程可得,
p
2
=
5
2
,解得,p=5,
則拋物線方程為y2=10x.
點(diǎn)評(píng):本題考查拋物線的性質(zhì)和方程,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形OABC中,OA⊥OC,AB⊥BC,且OA=6,OC=17,tan∠BCO=
4
3
,圓M的圓心在線段OA上,圓M與直線BC相切,兩點(diǎn)O與A到圓M上任意一點(diǎn)的距離均不小于8.
(1)求AB的長(zhǎng);
(2)OM多長(zhǎng)時(shí),圓M的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,P是棱AD的中點(diǎn),求二面角A-BD1-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程25-|x+1|-4×5-|x+1|=m有實(shí)根,則實(shí)數(shù)m的取值范圍是( 。
A、m<0B、m≥-4
C、-4≤m<0D、-3≤m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:3×3x+2=32x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用平面α截半徑為R的球,截面到球心的距離為
R
2
,則截面圓面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)(x∈N*),f(1)=1,f(n+2)=f(n+1)-f(n),求f(2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為4的正△ABC頂點(diǎn)A在平面α上,B,C在平面α的同側(cè),M為BC的中點(diǎn).若△ABC在平面α上的射影是以A為直角頂點(diǎn)的三角形AB1C1,則M到平面α的距離的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC是邊長(zhǎng)為2的等邊三角形,D是以A為圓心,半徑為1的圓上任意一點(diǎn),如圖所示,則
BD
CD
的最大值是( 。
A、3+
3
B、3-
3
C、3-2
3
D、3+2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案