3.如圖,在正△ABC中,點D、E分別在邊AC、AB上,且$AD=\frac{1}{3}AC$,$AE=\frac{2}{3}AB$,BD、CE相交于點F.
(Ⅰ)求證:A、E、F、D四點共圓,并求∠BFC的大;
(Ⅱ)求證:2BF•BD=CF•CE.

分析 (Ⅰ)先求出∠BFC的大小,再利用對角互補四點共圓,即可證明;
(Ⅱ)利用割線定理證明:2BF•BD=CF•CE.

解答 證明:(Ⅰ)因為AD=BE,AB=BC,∠BAD=∠CBE,則△ABD≌△BCE,
故∠ABD=∠BCE,
所以∠BCE+∠CBD=∠ABD+∠CBD=∠ABC=60°,
所以∠BFC=180°-(∠BCE+∠CBD)=120°.
所以,∠BAC+∠EFD=60°+∠BFC=180°,故A,E,F(xiàn),D四點共圓.
(Ⅱ)由(Ⅰ)知CF•CE=CD•CA=2BE•BA=2BF•BD,即2BF•BD=CF•CE.

點評 本題考查對角互補四點共圓,考查割線定理的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.某高中學校共有學生1800名,各年級男女學生人數(shù)如表.已知在全校學生中隨機抽取1名,抽到高二女生的概率是0.16.
高一年級高二年級高三年級
女生324x280
男生316312y
現(xiàn)用分層抽樣的方法,在全校抽取45名學生,則應在高三抽取的學生人數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),其下焦點F1與拋物線x2=-4y的焦點重合,離心率e=$\frac{\sqrt{2}}{2}$,過F1的直線l與橢圓交于A、B兩點,
(1)求橢圓的方程;
(2)求過點O、F1(其中O為坐標原點),且與直線y=-$\frac{{a}^{2}}{c}$(其中c為橢圓半焦距)相切的圓的方程;
(3)求$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$=$\frac{5}{4}$時,直線l的方程,并求當斜率大于0時的直線l被(2)中的圓(圓心在第四象限)所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知等差數(shù)列{an}的前n項和為Sn,若a3+a5=8,則S7=( 。
A.28B.32C.56D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題正確的是(  )
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cosA<cosB的充要條件
B.已知$p:\frac{1}{x+1}>0$,則$?p:\frac{1}{x+1}≤0$
C.命題p:對任意的x∈R,x2+x+1>0,則?p:對任意的x∈R,x2+x+1≤0
D.存在實數(shù)x∈R,使$sinx+cosx=\frac{π}{2}$成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.化簡sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線經(jīng)過點(-3,4),則此雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知正方形ABCD所在平面與正方形ABEF所在平面互相垂直,M為AC上一點,N為BF 上一點,且AM=FN.
(1)求證:MN∥平面CBE;
(2)求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在平面直角坐標系中,點P是直線l:x=-$\frac{1}{2}$上一動點,定點F($\frac{1}{2}$,0)點Q為PF的中點,動點M滿足$\overline{MQ}$•$\overline{PF}$=0,$\overline{MP}$=λ$\overline{OF}$(λ∈R),過點M作圓(x-3)2+y2=2的切線,切點分別為S,T,則|ST|的最小值為( 。
A.$\frac{2\sqrt{30}}{5}$B.$\frac{\sqrt{30}}{5}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案