7.如圖,正方形ABCD的邊長為2,點E,F(xiàn)分別是BC,CD的中點,沿著AE,AF,EF把該正方形折疊成三棱錐A-PEF(點B,C,D重合于點P),則三棱錐A-PEF內(nèi)切球的半徑為$\frac{1}{4}$.

分析 由題意,PA,PE,PF互相垂直,PA=2,PE=PF=1,利用等體積可得三棱錐A-PEF內(nèi)切球的半徑.

解答 解:由題意,PA,PE,PF互相垂直,PA=2,PE=PF=1,
則VP-AEF=$\frac{1}{3}×\frac{1}{2}×2×1×1$=$\frac{1}{3}$,
設(shè)三棱錐A-PEF內(nèi)切球的半徑為r,則
$\frac{1}{3}×(2×\frac{1}{2}×1×2+\frac{1}{2}×1×1+\frac{1}{2}×\sqrt{2}×\sqrt{5-\frac{1}{2}})$r=$\frac{1}{3}$,
∴r=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查三棱錐A-PEF內(nèi)切球的半徑,考查學生的計算能力,正確計算三棱錐的體積是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知D是△ABC中邊BC上的中點,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,則$\overrightarrow{AD}$=( 。
A.$\overrightarrow a$+$\overrightarrow b$B.$\frac{1}{2}$($\overrightarrow a$+$\overrightarrow b$)C.$\overrightarrow a$-$\overrightarrow b$D.$\frac{1}{2}$($\overrightarrow a$-$\overrightarrow b$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0,b>0,且a+b=1,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若數(shù)列{an}滿足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$=d,其中d為常數(shù),則稱數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿足an>0,a1=1,a5=3.
(1)求數(shù)列{an}的通項公式;
(2)記bn=na${\;}_{n}^{2}$,若不等式kbn>n(4-k)+4對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個零點x1,x2,x3,x4,且x1<x2<x3<x4,則x1+x2x3+x2x4的取值范圍是[-5,-4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“x>1”是“l(fā)og2(x-1)<0”的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.比較下列各組中兩個代數(shù)式的大。
(1)x2-x與x-2;
(2)已知a,b為正數(shù),且a≠b比較a3+b3與a2b+ab2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.球O與直三棱柱ABC-A1B1C1的各個面都相切,若三棱柱的表面積為27,△ABC的周長為6$\sqrt{3}$,則球的表面積為$\frac{31-12\sqrt{3}}{4}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.8個相同的小球放入5個不同盒子中,每盒不空的放法共有35種.

查看答案和解析>>

同步練習冊答案