已知f(x)=
2x+3
x-1
,函數(shù)y=h(x)的圖象與y=f-1(x-1)的圖象關(guān)于直線y=x對稱,則h(8)=( 。
A、
11
6
B、
26
7
C、
12
7
D、
21
8
考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)f(x)=
2x+3
x-1
的反函數(shù)為f-1(x)=
x+3
x-2
.從而g(x)=f-1(x-1)=
x+2
x-3
,令
x+2
x-3
=8,能求出x=h(8)=
26
7
解答: 解:∵f(x)=
2x+3
x-1
,函數(shù)y=h(x)的圖象與y=f-1(x-1)的圖象關(guān)于直線y=x對稱,
f(x)=
2x+3
x-1
,
∴x=
y+3
y-2

∴函數(shù)f(x)=
2x+3
x-1
的反函數(shù)為f-1(x)=
x+3
x-2

g(x)=f-1(x-1)=
x+2
x-3
,
x+2
x-3
=8,解得x=
26
7

故選:B.
點評:本題考查函數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線(m-1)x+y+2m+1=0過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
2
+cosx的所有正的極小值點從小到大排成的數(shù)列為{xn},則x1=( 。
A、
π
3
B、
3
C、
π
6
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的表面積為12π,一個正方體的各頂點都在該球面上,則這個正方體的體積為( 。
A、3
3
B、6
6
C、8
D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos1180°=t,則tan800°等于(  )
A、
1+t2
|t|
B、
1-t2
-t
C、
1+t2
t
D、
1-t2
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-
x-1
e-1
,則|f(x)|的極值點的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
k-2
-
y2
5-k
=1表示雙曲線,則實數(shù)k的取值范圍是( 。
A、2<k<5
B、k>5
C、k<2或k>5
D、以上答案均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(2a+1)x+alnx.
(1)求函數(shù)f(x)在區(qū)間[1,e]上的最小值;
(2)設(shè)g(x)=(1-a)x,其中0<a<1,判斷方程f(x)=g(x)在區(qū)間[1,e]上的解的個數(shù).(其中e為無理數(shù),約等于2.7182…且有e2-2e>e-1)

查看答案和解析>>

同步練習(xí)冊答案