14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),則$tan(α-\frac{π}{3})$=(  )
A.$2-\sqrt{3}$B.$-2-\sqrt{3}$C.$-2+\sqrt{3}$D.$2+\sqrt{3}$

分析 已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡(jiǎn)求出sinαcosα的值,再利用完全平方公式及同角三角函數(shù)間基本關(guān)系sinα-cosα的值,確定出sinα與cosα的值,進(jìn)而求出α的度數(shù),代入原式利用兩角和與差的正切函數(shù)公式化簡(jiǎn)即可得到結(jié)果.

解答 解:把sinα+cosα=$\sqrt{2}$,兩邊平方得:(sinα+cosα)2=1+2sinαcosα=2,即sinαcosα=$\frac{1}{2}$,
∴(sinα-cosα)2=1-2sinαcosα=0,
∴sinα-cosα=0,即sinα=cosα,
∵α∈(0,π),
∴sinα=cosα=$\frac{\sqrt{2}}{2}$,即α=$\frac{π}{4}$,
則原式=tan($\frac{π}{4}$-$\frac{π}{3}$)=$\frac{tan\frac{π}{4}-tan\frac{π}{3}}{1+tan\frac{π}{4}tan\frac{π}{3}}$=$\frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}$=-2+$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對(duì)任意的x∈R,函數(shù)f(x)=x3+ax2+7ax有三個(gè)單調(diào)區(qū)間,則a的范圍為{a|a<0或a>21}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.x>2是x>5的( 。
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z滿足z(2-i)=1+7i,則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.-1-3iB.-1+3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}$,若關(guān)于x的方程f2(x)-bf(x)+1=0有8個(gè)不同根,則實(shí)數(shù)b的取值范圍是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2cos(2x+$\frac{π}{3}$)-2cos2x+1.
(I)求函數(shù)f(x)圖象的對(duì)稱中心;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若△ABC為銳角三角形且f(A)=0,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.y=sin(x-$\frac{π}{4}$)的圖象的一個(gè)對(duì)稱中心是( 。
A.(-π,0)B.($\frac{π}{2}$,0)C.($\frac{3π}{2}$,0)D.(-$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,m)
(1)若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求實(shí)數(shù)m的值;
(2)若點(diǎn)A、B、O三點(diǎn)共線,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(1+x-2x25的展開式中x4項(xiàng)的系數(shù)為-15.

查看答案和解析>>

同步練習(xí)冊(cè)答案