5.$(lg25-lg\frac{1}{4})÷{100^{-\frac{1}{2}}}$=20.

分析 根據(jù)對數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì)計算即可.

解答 解:(lg25-lg$\frac{1}{4}$)÷$10{0}^{-\frac{1}{2}}$=(lg25+lg4)÷$\frac{1}{10}$=2×10=20,
故答案為:20.

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì)和指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了了解高一學(xué)生的體能情況,某校隨機(jī)抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出了頻率直方圖如圖所示,已知次數(shù)在[100,110)間的頻數(shù)為7,次數(shù)在110以下(不含110)視為不達(dá)標(biāo),次數(shù)在[110,130)視為達(dá)標(biāo),次數(shù)在130以上視為有優(yōu)秀.
(1)求此次抽樣的樣本總數(shù)為多少人?
(2)在樣本中,隨機(jī)抽取一人調(diào)查,則抽中不達(dá)標(biāo)學(xué)生、達(dá)標(biāo)學(xué)生、優(yōu)秀學(xué)生的概率分別是多少?
(3)將抽樣的樣本頻率視為總體概率,若優(yōu)秀成績記為15,達(dá)標(biāo)成績記為10分,不達(dá)標(biāo)記為5分,現(xiàn)在從該校高一學(xué)生中隨機(jī)抽取2人,他們分值和記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x(m∈R),令F(x)=f(x)+g(x).
(1)當(dāng)m=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l:3x+4y-3=0和圓C:x2+y2-6x-2y+1=0,則圓C上到直線l的距離等于1的點(diǎn)的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“a>b>0”是“a2>b2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)$\frac{i}{1+2i}$(i是虛數(shù)單位)的虛部是( 。
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知 A={x|x=4n+1,n∈Z},B={x|x=8n+1,n∈Z},判斷A、B之間的關(guān)系是A?B(用⊆或?或∈或∉填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x∈(0,π),則函數(shù)f(x)=sinx+$\frac{4}{sinx}$的最小值是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}中,a1=2,an>0(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=$\frac{2}{{{S_{n+1}}+{S_n}-2}}$.
(1)判斷數(shù)列{(Sn-1)2}是否等差數(shù)列或等比數(shù)列?試說明理由;
(2)設(shè){bn}是數(shù)列{Sn}中的按從小到大順序組成的整數(shù)數(shù)列.
①求b3
②存在N(N∈N*),當(dāng)n≤N時,使得在{Sn}中,數(shù)列{bn}有且只有20項(xiàng),求N的范圍.

查看答案和解析>>

同步練習(xí)冊答案